

KEEPMOAT HOMES

EAKRING ROAD, BILSTHORPE

GEO-ENVIRONMENTAL ASSESSMENT REPORT

Travis Baker Geo-Environmental Ltd

Trinity Point New Road Halesowen West Midlands B63 3HY Tel: 0121 550 8037 Fax: 0121 550 8047

info@travisbaker.co.uk www.travisbaker.co.uk

DOCUMENT CONTROL

Project title: Eakring Road, Bilsthorpe

Document type: Geo-Environmental Assessment Report

Job number: **19017**

Date	Revision	Comments	
	R01		
		Prepared by	Checked by
8 October 2019	Name	L Glover	D James
		Prepared by	Checked by
	Name		
		·	
		Prepared by	Checked by
	Name		
		Prepared by	Checked by
	Name		

This document has been prepared by Travis Baker Geo-Environmental Limited for the exclusive use by the commissioning party in accordance with the terms and conditions of the contract between Travis Baker Geo-Environmental Limited and the commissioning party. No other party may use, make use or rely on the contents of this report without the prior written consent of Travis Baker Geo-Environmental Limited. No liability is accepted by Travis Baker Geo-Environmental Limited for any use of this report other than for the purpose for which it was originally prepared. This document may contain and rely on information provided by Third Parties; no verification of such information has been undertaken and Travis Baker Geo-Environmental Limited accept no responsibility for any inaccuracies within such information. No part of this report may be copied or reproduced by any means without written permission from Travis Baker Geo-Environmental Limited.

The consultant's liability to the client arising out of or in connection with this document whether under the law of contract in tort (including negligence), in equity, or under statute or otherwise shall be limited to the fee paid for the preparation of this document. The consultant shall not be liable to the client in respect of any consequential or indirect loss or damage. The consultant shall be deemed to have been discharged from all liability in respect of this document whether under contract, in tort (including negligence), under statute or otherwise, on the expiration of 1 year from the completion of this document.

CONTENTS

1.0	INTRODUCTION	1 - 2
2.0	SITE SETTING AND HISTORY	3
3.0	GEOLOGY, HYDROGEOLOGY, MINING AND RADON	4
4.0	ENVIRONMENTAL SETTING	5 - 6
5.0	PRELIMINARY CONCEPTUAL SITE MODEL AND RISK ASSESSMENT	7 - 10
6.0	SITE INVESTIGATION RESULTS	11 - 18
7.0	CONTAMINATION ASSESSMENT	19 - 22
8.0	PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS	23 - 27

APPENDICES

- Appendix 1 List of Information Sources
- Appendix 2 Site Photographs
- Appendix 3 Conceptual Site Model and Qualitative Risk Assessment
- Appendix 4 Dynamic Sampling Borehole Logs
- Appendix 5 Trial Pit and Soakaway Pit Logs
- Appendix 6 Laboratory Geotechnical Test Results
- Appendix 7 Laboratory Geochemical Test Results and Summary Table
- Appendix 8 TRL DCP Results and Estimated CBR Values
- Appendix 9 Ground Gas and Groundwater Monitoring Results
- Appendix 10 Soakaway Test Results

DRAWINGS

Drawing No.	Drawing Title	Scale
19017-GE01	Site Investigation Location Plan	1:500 at A1
19017-GE02	Depth to Hard Strata	1:500 at A1

1. INTRODUCTION

1.1 Introduction

- 1.1.1 This report has been prepared in accordance with instructions received from Mr Ben Douglas of Keepmoat Homes in an email dated 31 May 2019. The report has been prepared in accordance with proposals detailed within Travis Baker Geo-Environmental Ltd Letter 19017-LET-GE01 dated 3 April 2019.
- 1.1.2 This document has been compiled to provide an initial assessment of ground conditions and identify potential development constraints in respect of a proposed residential development at a parcel of land off Eakring Road, Bilsthorpe, Nottinghamshire. It is understood that development proposals for the site comprise low-rise residential housing with associated gardens, landscaping and infrastructure; a small area of the site is also to be developed for retail use.
- 1.1.3 This report is intended to provide an initial indication of the ground conditions to assist the client with identifying potential abnormal construction costs associated with potential geo-environmental issues which may be associated with the site. A Phase 1 Desk Study has previously been prepared for the site by Rodgers Leask Environmental (RLE) dated 17 March 2017. This report provides a brief summary of the Phase 1 Desk Study, plus the results of an intrusive site investigation undertaken by Travis Baker Geo-Environmental Ltd.
- 1.1.4 The information contained within this report describes the historical, geological and environmental setting of the site and immediate area. The report also describes the results of geotechnical and contamination assessments undertaken based on the findings of the desk study and site investigations. Recommendations are provided in respect of foundation options, contamination, ground gases, drainage and road construction, plus any additional potential development constraints and considerations identified.
- 1.1.5 This report has been compiled using readily available sources of information from local archives and relevant on-line data bases. A site specific Groundsure Report is included within the RLE Phase 1 Desk Study Report. A list of information sources used to prepare this report is included as Appendix 1.
- 1.1.6 Initial site investigations were undertaken at the Eakring Road site on the 29 July 2019, which comprised the drilling of six dynamic sampling boreholes, six TRL probes and eight machine excavated trial pits. The dynamic sampling boreholes and the TRL probes were completed by Exploration Ltd. The trial pits were undertaken by St. Clements Plant Ltd. Subsequent to the initial site investigation works, six soakaway tests were undertaken across the site. The investigations were completed under the direct supervision of Travis Baker Geo-Environmental Ltd. The locations of the exploratory holes are illustrated on Drawing No. 19017-GE01.
- 1.1.7 This investigation has generally been carried out in accordance with the guidance provided in the Environment Agency (EA) and National House Building Council (NHBC) publication 'Guidance for the Safe Development of Housing on Land Affected by Contamination' (2008) and the Investigation of Potentially Contaminated Sites Code of Practice (BS10175 2011).
- 1.1.8 This report has been prepared for the sole use and reliance of Keepmoat Homes. This report shall not be relied upon or transferred to other parties without the written authorisation of Travis Baker Geo-Environmental Ltd (TBGE).

Project 19017

- 1.1.9 The findings of this report have been based on information provided from a number of different sources, TBGE have carried out all reasonable care in examining and interpreting this information to confirm its reliability, however, we cannot guarantee the authenticity of this information.
- 1.1.10 The findings of this report are based on the ground conditions identified at the individual exploratory holes and the associated laboratory testing. TBGE have used best skill and diligence in interpreting the conditions between the exploratory hole locations, however we do not accept any liability for conditions that are not revealed by the exploratory holes or test data. Our recommendations on the ground conditions between or beneath exploratory hole locations are therefore for general guidance only and should be confirmed at or prior to construction.

2. SITE SETTING

2.1 Site Description

- 2.1.1 The site is approximately 3.8 hectares in area and comprises a single grassed field. The site is located at the north eastern periphery of Bilsthorpe approximately 11km east of the centre of Mansfield. The site location is illustrated on Drawing 19017-GE01. The study area is approximately centred at National Grid Reference (NGR) 464960E, 361059N.
- 2.1.2 The site comprises a roughly rectangular enclosed grassed field. It is bound to the west by Eakring Road, beyond which is residential housing; a dismantled railway line to the north; an embankment with trees and hedgerows to the east and Wellspek Alloy Wheel Repairs to the south. Mature trees and hedgerows are present around the periphery of the site. A series of photographs identifying the site conditions at the time of the recent site investigation are included in Appendix 2.
- 2.1.3 The site is relatively flat lying with localised variations. The eastern boundary of the site is marked by a vegetated embankment. This embankment is understood to part of a colliery spoil mound to the former Bilsthorpe Colliery. A footpath trending north east to south west passes through the centre of the site.
- 2.1.4 The RLE Phase 1 Desk Study identified an infilled brick tunnel / bridge within the embankment at the north east corner of the site. This was not identified during the recent site investigations due to overgrowth of vegetation along the site boundaries.
- 2.1.5 There was no evidence of invasive weeds identified by our engineers during the site investigation. Confirmation as to the absence of Part IIA invasive weeds should be sought from an appropriate ecological / habitat survey.

2.2 Site History

- 2.2.1 The Groundsure report previously prepared for the site includes copies of Ordnance Survey County Series and National Grid topographical plans dating from 1886. The historical plans have been reviewed to determine the development history of the site and the immediate vicinity.
- 2.2.2 The site has remained relatively undeveloped since the first available edition of the mapping (1884) with the exception of North Field Lane trending north east south west through the northern part of the site until the 1950 mapping edition. The 1939 edition mapping shows a section of railway line at the north western corner of the site; this is shown until the 1989 edition. The 1971 edition of the mapping shows a footpath replacing North Field Lane which was shown on previous editions of the mapping.
- 2.2.3 The land within the general vicinity of the site remained relatively undeveloped until the 1950 mapping which shows the construction of the railway on the northern boundary of the site, the development of Bilsthorpe Colliery to the north east and residential development to the immediate west and south west. The 1971 partial mapping shows a mine marked approximately 750m to the north east of the site. The 1988 partial mapping shows the railway on the northern boundary of the site to be a Mineral Railway, there is also a slurry lagoon to the east of the site. The 2002 mapping shows Bilsthorpe Colliery to have been closed / demolished. No significant changes are noted on subsequent map editions.

3. GEOLOGY, HYDROGEOLOGY, MINING AND RADON

3.1 Recorded Geology

- 3.1.1 Reference to the British Geological Survey (BGS) online Geo-index has been undertaken to establish the recorded geological setting of the site and the surrounding area.
- 3.1.2 The published geological mapping shows the site to be free from made ground and superficial deposits.
- 3.1.3 The recorded geology varies across the site. In the west and central areas of the site, the Chester Formation is recorded comprising red brown pebbly and gravelly sandstone. In the eastern portion of the site, the Retford Member is recorded comprising green-grey mudstone and siltstone. The strata underlying the site are of Triassic age.

3.2 Hydrogeology

- 3.2.1 Defra's Magic Map application has been consulted in respect of the aquifer designation of the bedrock directly underlying the site. The Retford Member underlying the eastern area of the site is categorised as a Principal Aquifer, the Chester Formation is classified as a Secondary A Aquifer.
- 3.2.2 The site is within a Zone III Total Catchment Groundwater Protection Zone.

3.3 Mining

- 3.3.1 The proposed development site is within an area which may be affected by coal mining activities. A Coal Authority (CA) Mining Report has previously been obtained for the site and is included within the RLE Phase 1 Desk Study. The pertinent CA information is summarised in the following.
 - The site is within an area which could be affected by past underground mining of two seams of coal at 430m and 670m depth which were last worked in 1966. Any ground movement due to coal mining activity should have ceased.
 - The site is not within an area which could be affected by current underground coal mining.
 - There are no mining entries on or within 20m of the site boundary.
 - The site is not within 200m of the boundary of an opencast site from which coal has been removed.
 - Reserves of coal exist within the area which have the potential to be worked in the future.
 - There is one claim within 50m of the site boundary due to coal mining subsidence.
 - The property is within an area where notices to withdraw support were given in 1981.

3.4 Radon

3.4.1 The Building Research Establishment (BRE) 'Guidance on Protective Measures for New Buildings' (BR 211) published in 2015 has been consulted. The report identifies areas of the country that are at risk from radon and may require radon protection. The BRE guidance document indicates that the site is not within an area where in new properties require radon protective measures.

4. ENVIRONMENTAL SETTING

4.1 Groundsure Report

4.1.1 Information from the Environment Agency (EA) was obtained via a site specific Groundsure Report included within the RLE Phase 1 Desk Study. The Groundsure Report provides environmental information covering a 1km buffer from the centre of the Eakring Road site. The report includes details of nearby sites that are recorded to hold abstraction or discharge consents, recorded pollution incidents, licensed waste sites, and sites that have, or historically have had, potentially contaminative issues. For ease of reference, a summary of the pertinent points are summarised in the following text.

4.2 Abstraction Licenses

- 4.2.1 There are two historical groundwater abstraction licences within 1km of the site boundary. They are both associated with Bilsthorpe Colliery approximately 420m to the north east. There are a further twelve historical groundwater abstraction licenses between 1.5km and 2km from the site.
- 4.2.2 There are five active surface water abstraction licences within 1.5km of the site boundary relating to spray irrigation using water from Rainworth Water.
- 4.2.3 There are five active potable water abstraction licences between 1.5km and 1.7km of the site boundary, all to the west of the site.

4.3 Discharge Consents

4.3.1 There are three records of historical/revoked discharge consents within 500m of the site. Two are associated with trade discharges at Bilsthorpe Colliery approximately 320m to the south east and one relates to sewage approximately 400m to the south east.

4.4 Pollution Incidents to Controlled Waters

4.4.1 There have been no recorded pollution incidents to controlled waters within 500m of the site.

4.5 Part A(1) and IPPC Authorised Activities

4.5.1 There are twelve records for Part A(1) and IPPC Authorised activities within 500m of the site. All records related to waste oil disposal, waste landfilling and associated processes approximately 350m to the south east at Bilsthorpe Oil Treatment Plant and Bilsthorpe Landfill site. Two of the twelve records are currently active.

4.6 Part A(2) and Part B Activities

4.6.1 There is one record for Part A(2) and Part B activities within 500m of the site associated with Bilsthorpe Colliery. The record is associated with the processing of coal/gypsum/carbon.

4.7 Historical Landfill Sites, Recorded Landfill Sites and Registered Landfill Sites

4.7.1 There is one active recorded landfill site approximately 530m to the south east of the site. Records indicate that the site is likely to accept 10 tonnes per day excluding inert waste.

- 4.7.2 Two records for a historic landfill site exist approximately 700m to the south east of the site. The site is recorded to have accepted inert, industrial, commercial, household, special and liquid sludge wastes.
- 4.7.3 Twenty five records exist for EA licensed waste sites between 345m and 735m to the south east of the site including a physico-chemical treatment facility, special waste transfer station, household waste amenity site, vehicle dismantler, co-disposal landfill and end of life vehicles facility.

4.8 Registered Waste Treatment or Disposal Sites

- 4.8.1 There are three records for planning applications within 500m of the site. One is for a waste to energy site approximately 300m to the north east of the site at the former Bilsthorpe Colliery.
- 4.8.2 Approximately 350m to the south east of the site, there are two historic planning applications for a waste transfer station and a recycling centre at Oakwood Fuels. The planning applications were granted by Newark and Sherwood District Council.

4.9 Control of Major Accident Hazard Sites (COMAH)

4.9.1 There are no registered Control of Major Accidents Hazard Sites within 1km of the site.

4.10 Fuel Station Entries

4.10.1 There is one obsolete fuel station entry recorded within 1km of the site. The obsolete station is approximately 400m to the south of the site associated with B F L garage on Kirklington Road.

4.11 Industrial Land Use Sites

- 4.11.1 There are nine records of historic potentially contaminative land uses for the site. These include railway sidings, a colliery and a telecom exchange.
- 4.11.2 Within 250m of the site, there are records for refuse heaps, an unspecified factory, a slurry lagoon, a fire station, unspecified tanks and an electricity substation.

5. PRELIMINARY CONCEPTUAL SITE MODEL AND RISK ASESSMENT

5.1 Initial Conceptual Site Model

- 5.1.1 This conceptual site model (CSM) represents the environmental characteristics of the Eakring Road site and illustrates the relationships between the identified contaminants, pathways and receptors. The CSM identifies the potential contaminant linkages, which may exist at the site. The aim of the CSM is to provide a qualitative assessment of risk posed to both human health and environmental receptors from possible on and off-site contamination sources and to inform the design of the intrusive site investigation works. In order for a contaminant linkage to exist, each of the three elements need to be present i.e. the source (contaminant), pathway and receptor. These elements are defined as:
 - Source Substance that can cause harm;
 - Pathway A credible pollutant linkage between the source and target;
 - Target A receptor, which could be harmed.

5.2 Sources

- 5.2.1 The initial CSM has been based on the findings of the background information described within Sections 1 to 4 of this report.
- 5.2.2 Desk study researches has identified the potential for limited sources of contamination to be present on-site. The potential sources of contamination are considered to be associated with adjacent land uses and the possible use of pesticides and insecticides on the site. A summary of potential sources and associated contaminants that may be hazardous to receptors identified in Section 5.4.1 is presented below.

Table 1 – Potential Contamination Sources

	Source	Potential Contaminant
1.	Made ground associated with railway sidings in the north of the site and former road.	Metals, metalloids, cyanide, phenol, sulphate, polyaromatic hydrocarbons, asbestos, pH.
2.	Made ground associated with railway sidings in the north of the site and former road.	Ground gases (carbon dioxide, methane)
3.	Pesticides and insecticides from the former land use as an agricultural field	Organophosphorus and organochlorine insecticides
4.	Potential made ground including putrescible waste and organic rich deposits from the landfill to the south east of the site	Ground gases (carbon dioxide and methane)
5.	Former colliery and spoil mounds, windblown contaminants.	Polyaromatic hydrocarbons, metals.

5.3 Pathways

- 5.3.1 The list below summarises possible pathways, which could allow potential receptors to be exposed to any contamination present at the site:
 - Dermal contact, ingestion or inhalation of soil contaminants by site users;
 - Ingestion of contaminated soil;
 - Inhalation of contaminated dust;

- Migration of soil borne gases and vapour into new buildings;
- Migration of contaminants via service routes and foundations;
- Leaching of contaminants and migration through strata;
- Groundwater including perched groundwater;
- Surface water run-off;
- Direct contact between contaminated soils and building substructures.

5.4 Targets

- 5.4.1 Potential receptors to any contamination identified at the site include:
 - Humans during construction phase and subsequent site users;
 - Flora and fauna on the site (dependent upon final site design);
 - Principal and Secondary A aquifers underlying the site;
 - Local water courses;
 - Buildings and buildings sub-structures;
 - Adjacent sites.

5.5 Preliminary Risk Assessment

- 5.5.1 The methodology used in this assessment is broadly analogous with that presented in the EA/NHBC document R&D Publication 66 "Guidance for the Safe Development of Housing on Land Affected by Contamination" (2008) and has been used to evaluate a level of risk for each contaminant linkage identified in the conceptual model. This is a qualitative approach based upon the classification of the probability of occurrence and the potential consequence (severity).
- 5.5.2 We have used the risk classification system described in R&D Publication 66 in this appraisal, the degree of risk is based on an assessment of consequence of an event occurring and the probability of a pollutant linkage. Table 2 below is the Categorisation of Risk table from the document, in which the likelihood of each pollutant linkage being realised is compared with the severity of the consequence. This provides a qualitative assessment of potentially unacceptable risks.

Table 2 – Categorisation of Risk

		Consequence				
		Severe	Medium	Mild	Minor	
	High Likelihood	Very High Risk	Very High Risk High Risk		Moderate to Low Risk	
lity of Linka	Likely	High Risk	Moderate Risk	Moderate to Low Risk	Low Risk	
Probability of Pollutant Linkage	Low Likelihood	Moderate Risk	Moderate to Low Risk	Low Risk	Very Low Risk	
Pr	Unlikely	Moderate to Low Risk	Low Risk	Very Low Risk	Very Low Risk	

5.5.3 The definitions of the risk terms used in describing the risk levels in Table 3 above are based on those provided in CIRIA 552, Contaminated Land Risk Assessment, a guide to Good Practice 2001a.

- Very High Risk There is a probability that severe harm could arise to a designated receptor from an identified hazard at the site without appropriate remediation action.
- High Risk Harm is likely to arise to the designated receptor from an identified hazard at the site without appropriate action.
- Moderate Risk It is possible that without appropriate remediation action harm could arise to the designated receptor. It is relatively unlikely that such harm would be severe, and if any harm were to occur it is more likely that such harm would be relatively mild.
- Low Risk It is possible that harm could arise to a designated receptor from an identified hazard. It is likely that, at worst, if any harm were realised, any effects would be mild.
- Very Low Risk The presence of an identified hazard does not give rise to the potential to cause harm to a designated receptor.
- 5.5.4 We understand that development proposals for the Eakring Road Site comprises residential housing, gardens, landscaping, public open space and associated infrastructure plus a retail unit within the south west of the site.
- 5.5.5 This assessment of the potential harm to either human health or the local environment is based on our experience and judgement.

5.6 Pollution Linkages

- 5.6.1 On the basis of the sources, pathways and targets described previously we have summarised the identified pollutant linkages within our Conceptual Site Model and Qualitative Risk Assessment included within Appendix 5.
- 5.6.2 Based on the proposed end use, the site is generally considered to represent a low risk to human health and low risk to controlled waters. This risk has been investigated by means of site investigation works detailed within Section 6 of this report. The locations of the exploratory boreholes are shown on Drawing 19017-GE01.

5.7 Groundwater

5.7.1 Based on the on the previous land use of the site and the identified pollutant linkages it is considered that the site represents a low risk to controlled waters. The risk to groundwater is not considered further as part of this geo-environmental assessment.

5.8 Contaminants of Concern

- 5.8.1 Based on the identified potential contamination sources and development proposals the following contaminants of concern have been identified:
 - metals and metalloids including arsenic, boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc;
 - pH:
 - sulphate (total and water soluble), sulphide and sulphur;
 - speciated polycyclic aromatic hydrocarbons;
 - Pesticides / insecticides.

5.8.2 The main risk of contamination identified in this preliminary risk assessment is associated with the potential historic use of agrochemicals on the site and made ground associated with the railway to the north of the site.

5.9 Site Investigation Strategy

5.9.1 Against the background of the CSM and preliminary risk assessment, a site investigation has been designed and implemented. Table 3 (below) summarises the site investigation strategy for the site. Boreholes have been positioned to provide a general coverage of the site to obtain geochemical and geotechnical data and to target areas of potential contamination.

Table 3 – Site Investigation Strategy

Exploratory Hole	Objective
Dynamic sampling Boreholes	To determine ground and groundwater conditions across the site, including: - nature and depth of any made ground; - nature of near surface natural materials; - obtain soil samples for laboratory chemical and geotechnical testing; - carry out in-situ geotechnical testing (SPTs); - obtain data for foundation design; - install standpipes for ground gas and groundwater monitoring.
Machine Excavated Trial Pits	To determine ground and groundwater conditions across the site, including: - nature and depth of any made ground; - nature of near surface deposits; - obtain soil samples for laboratory chemical and geotechnical testing; - carry out in-situ geotechnical testing (hand vane); - assess suitability for shallow foundations;
(TRL) Cone Penetrometer Tests	To provide preliminary CBR data for highways design.
Laboratory Testing - Contamination	Analysis of soil samples to provide data for human health risk assessments.
Laboratory Testing - Geotechnical	Analysis of soil samples to assist with foundation and infrastructure design.
Monitoring	Ground gas / groundwater monitoring to confirm groundwater levels and gas concentrations for ground gas assessments.

6.0 SITE INVESTIGATION RESULTS

6.1 Site Works

- 6.1.1 The ground investigation was undertaken by Travis Baker Geo-Environmental Ltd on 29 July and 19 to 21 August 2019. Exploration Ltd undertook the dynamic sampling drilling and cone penetrometer tests, St. Clements Plant Ltd completed the machine excavated trial pits and Triple H Contractors undertook the on-site soakaway testing. All works were supervised by Travis Baker Geo-Environmental Ltd on a full-time basis. The dynamic sampling borehole logs and the trial pit / soakaway test pit logs are included as Appendices 4 and 5 respectively. The results of the TRL testing and site monitoring (gas and groundwater) are included as Appendices 8 and 9 respectively.
- 6.1.2 Given the absence of any specific contamination sources to target, the exploratory hole locations were positioned to provide a general site coverage and characterise the ground conditions. The investigation was as far as possible undertaken in accordance with BS10175:2011 + A2:2017 Investigation of Potentially Contaminated Sites; BS5930:2015 Code of Practice for Site Investigation and BS EN ISO 14688-2:2018 Geotechnical Investigation and Testing.
- 6.1.3 Representative soil samples of each soil type encountered were taken from the boreholes. Soil samples were collected for geochemical analysis and placed into appropriate sampling containers (plastic tubs or amber jars, as appropriate). The samples were then placed in cool boxes together with ice packs. These were collected and tested by an approved accredited laboratory, Concept Life Sciences (CLS). The results of the laboratory testing are included within Appendix 7
- 6.1.4 Bulk soil samples were obtained from selected trial pit and borehole locations and sent for geotechnical testing to assist with foundation assessment, infrastructure design and identify the engineering properties of the soils. The results of the laboratory geotechnical testing are included within Appendix 6.
- 6.1.5 The site investigation comprised the following works:
 - Six dynamic sampling boreholes with in-situ standard penetration tests (SPTs) at 1m intervals DS01 to DS06
 - Eight machine excavated trial pits TP01 to TP08.
 - In-situ hand shear vein tests where appropriate.
 - Six cone penetrometer tests TRLDCP1 to TRLDCP6.
 - Six in-situ soakaway tests.
 - Laboratory geotechnical testing of soil samples.
 - Laboratory chemical analysis of soil samples.
 - Ground gas and groundwater monitoring.

Instrumentation and Monitoring

6.1.6 A total of four 50mm diameter gas / groundwater monitoring standpipes were installed within selected boreholes (DS1, DS3, DS5 and DS6) in order to monitor the groundwater levels and concentrations of soil-borne gases. Installation details are shown on the exploratory hole logs included in Appendix 4. A total of four monitoring visits have been carried out to date between the 1 August 2019 and 13 September 2019 during varying barometric conditions. Concentrations of oxygen, methane and carbon dioxide, together with groundwater levels, barometric pressure and gas flow rates have been recorded within each of the installations. The results of the monitoring are presented within Appendix 9.

Testing

- 6.1.7 A programme of geotechnical laboratory testing was undertaken in accordance with BS1377:1990. The testing included following:-
 - Natural moisture content determination (6 samples),
 - Plasticity Index (6 samples).
 - Particle size distribution test (1 sample).
- 6.1.8 A total of 31 soil samples were scheduled for contamination testing as summarised in Table 4.

Table 4 – List of Determinants Tested – Soil Samples

Test	Topsoil / Subsoil	Weathered Chester Formation	Weathered Retford Member
Travis Baker Greenfield Suite	14	6	-
Speciated Polyaromatic Hydrocarbons (USEPA 16 PAH)	9	-	-
Organophosphorus Insecticides	3	1	-
Organochlorine Insecticides	3	-	-
BRE SD1	-	5	3

^{◊:} Travis Baker Greenfield Suite includes:- arsenic, boron, cadmium, total chromium, copper, lead, mercury, nickel, selenium, zinc, sulphate (soluble), pH

6.2 Ground Conditions

Top Soil

- 6.2.1 Topsoil was encountered within each of the boreholes across the site. These materials generally range to depths of between 0.3m and 0.45m. The topsoil varied across the site dependent on the underlying geology. At exploratory hole locations where the underlying geology was the Chester Formation (i.e. western and central areas), the topsoil material generally comprises slightly clayey slightly gravelly (quartzite) sand with fine rootlets. Where the underlying geology is recorded as the Retford Member, the topsoil material generally comprised sandy slightly gravelly (quartzite) clay with fine rootlets.
- 6.2.2 No extensive deposits of made ground were observed during the site works. Rare brick fragments were identified at DS04 and DS06 within topsoil.

Natural Superficial Deposits

6.3.1 No natural superficial deposits were encountered within the exploratory hole locations which is consistent with the recorded geology of the site and surrounding area.

Solid Geology

- 6.4.1 The site is recorded to be directly underlain by strata of the Chester Formation (central and western area) and Retford Member (eastern area). This was generally confirmed within the exploratory boreholes and trial pits as described in the following.
- 6.4.2 Within exploratory holes DS03, DS06, TP05 and TP07, stiff and very stiff light grey and orange sandy, silty, gravelly clay was encountered. The gravel comprised tabular sandstone and siltstone

^{#:} USEPA16 PAH includes:- naphthalene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(123-cd)pyrene, benzo(ghi)perylene and dibenzo(a,h)anthracene.

with observed lithorelicts. At the base of the aforementioned locations, fragments of extremely weak green-grey siltstone were encountered. These materials are considered to be representative of weathered strata of the Retford Member which is recorded to underlie the eastern part of the site. Drilling at DS03 and DS06 refused between 1.52m and 2.00m below ground level.

6.4.3 At the remaining exploratory hole locations, medium dense to very dense red brown gravelly (occasionally silty and clayey) sands were encountered. The gravel typically comprises fine to coarse rounded quartzite. TP01 identified a band of sandy gravelly clay between 1.1m and 2.25m. At the base of TP06, extremely weak grey brown sandstone as encountered. Boreholes refused between 1.93m and 3.0m below ground level within the central and western areas of the site. These deposits are considered to be representative of the Chester Formation.

6.3 In-Situ Testing

Standard Penetration Tests (SPTs)

6.3.1 A total of 12 Standard penetration tests (SPTs) have been undertaken within the dynamic sampling boreholes. The SPT 'N' values obtained from the 12 tests undertaken within the weathered Retford Member ranged between 9 and greater than 50 (i.e. firm clay to refusal). The SPT 'N' values obtained within the weathered Chester Formation ranged between 9 and greater than 50 (i.e. loose sand top refusal). The results are included on the individual borehole logs. For ease of reference, a summary of the SPT results against depth is presented within Table 5.

Table 5 - SPT Summary

Borehole Ref.	SPT 'N' Value			
borenoie kei.	1m	2m		
DS01	14	>50		
DS02	9	>50		
DS03	>50	>50		
DS04	15	>50		
DS05	11	>50		
DS06	9	>50		

Weathered Chester Member Weathered Retford Formation

Hand Shear Vane Tests (HSV)

6.3.2 Where possible, hand Shear vane tests (HSV) were completed within cohesive material within trial pits. The results are included on the individual trial pit logs. However, for ease of reference, a summary of the SPT results against depth is presented within Table 6.

Table 6 - HSV Summary

Trial Pit Ref.	Donth (m)	Shear Strength (kPa)				
IIIai Pit Rei.	Depth (m)	Test 1	Test 2	Test 3	Average	Consistency
TP01	1.2	140	130	98	122.67	Stiff
TP05	0.9	110	90	92	97.33	Stiff
TP06	1.2	130	112	140	127.33	Stiff
TP08	1.0	128	130	140	132.67	Stiff

Weathered Retford Member Weathered Chester Formation

6.4 Groundwater

- 6.4.1 Groundwater was not encountered within any of the boreholes or trial pits at the time of the intrusive site investigations.
- 6.4.2 Groundwater monitoring has been undertaken on four occasions within standpipes installed within boreholes DS01, DS03, DS05 and DS06. The majority of the boreholes remained dry during the monitoring period. Groundwater levels of 1.36m to 1.43m below ground level were recorded at DS06 located within the southern area of the site adjacent to the eastern boundary.
- 6.4.3 It should be noted that groundwater levels fluctuate throughout the year and between years due to the dynamic balance between groundwater recharge, storage and discharge. Factors affecting groundwater levels include seasonal/climatic variation and groundwater abstraction.

6.5 Trial Pit Stability

6.5.1 All of the dynamic sampling boreholes and trial pits undertaken across the proposed development areas remained stable during the works. It should be noted that the exploratory holes were only open for a short period to allow for logging and sampling. Trenches may be less stable if left open for a longer period of time. Based on the conditions encountered, services trenches / footings to depths of say 2.5m should remain stable within the weathered Retford Member in the east of the site. Support may be required within the granular materials of the weathered Chester Formation, for excavations say >2.0m.

6.6 Laboratory Geotechnical Testing

Plasticity Index

6.6.1 A total of six plasticity index tests have been scheduled on samples obtained from the boreholes and trial pits located across the proposed development area. The tests carried out identified varied volume potential across the proposed development site. The weathered Retford Formation is indicated to range from low to medium volume change potential. The weathered Chester Formation test results vary from not shrinkable (<10%) to a low volume change potential.

Table 6 – Summary of Laboratory Plasticity Index Test Results

Location	Depth (m)	Material Type	Plasticity Index (Ip)	Modified Plasticity Index (I'p)	Volume Change Potential
DS06	0.7-1.0	Weathered Retford Member	15	14.8	Low
TP01	1.3-1.5	Weathered Chester Formation	17	13.7	Low
TP03	0.9-1.1	Weathered Chester Formation	9	8.7	Not Shrinkable
TP05	0.9-1.1	Weathered Retford Member	26	25.7	Medium
TP05	1.4-1.7	Weathered Retford Member	18	17.8	Low
TP07	1.2-1.3	Weathered Retford Member	18	17.8	Low

- 6.6.2 NHBC guidance indicates that highest modified plasticity index should be used when assessing tree influence and there is a range of results. It is therefore recommended that a low volume change potential is used to assess founding depths in relation to trees when founding in material of the weathered Chester Formation, and a medium volume change potential when founding in material of the weathered Retford Member.
- 6.6.3 A copy of the geotechnical test results are included as Appendix 6.

6.7 TRL Dynamic Cone Penetrometer Tests

6.7.1 Six TRL DCP tests were carried out within the proposed road locations across the site. The results indicate approximate CBR values of between 0.68% and 2.37% within the top 1m. Approximate CBR values increase with depth, with typical values of 1.8% to 2.2% recorded at a depth of 0.5m. A copy of the TRL results are included as Appendix 8.

6.8 Concrete Classification

- 6.8.1 Excluding the topsoil, pH and water soluble sulphate (SO₄) tests were undertaken on 18 samples of natural soils. The results indicated SO₄ values of <0.05g/l to 0.1g/l, however the majority of samples presented <0.05g/l of water soluble sulphate. Recorded pH values ranged from 7.0 to 8.8.
- 6.8.2 The results of the chemical analysis have been compared to BRE Special Digest 1 (Concrete in Aggressive Ground). Based on the results of the chemical testing the Design Sulphate Class for the superficial clay has been determined as DS1 and the Aggressive Chemical Environment for Concrete class is AC-1s.

6.9 Soakaway Potential

- 6.9.1 In-situ soakaway testing was undertaken at six locations across the proposed development area (i.e. SA1 to SA6) as shown on Drawing 19017-GE01. The results of the soakaway testing are included within Appendix 10.
- 6.9.2 To calculate the soil infiltration rate in accordance with BRE Digest 365, it is necessary to monitor the time taken for the water level to reduce from 25% to 75% of the effective depth of the pit. To fully assess the permeability of the soils the pit should be allowed to fully drain three times on the same or consecutive days.
- 6.9.3 To provide an approximation of the soil infiltration rate for the natural materials for each location we have plotted the results on a graph to determine the times that the water levels reached 25% and 75% of the effective depth. In accordance with BRE 365, we have used the following formula to determine the approximate permeability rate:

$$f = vp75-25 ms^{-1}$$

ap50 x tp75-25

Where:

f = soil infiltration rate

vp75-25 = effective storage volume of water in the trial pit between 75% and 25% effective depth ap50 = the internal surface area of the trial pit up to 50% effective depth including the base area tp75-25 = time for the water level to fall from 75% to 25% effective depth (in seconds)

- 6.9.4 The records of the six soakaway tests are attached as Appendix 10 for reference which include the pit dimensions, and the depth of water throughout the test period. The calculation summary sheet, also attached as Appendix 10, provides the calculations of the surface area and effective depths along with the recorded water depths for each trial. For ease of reference we have summarised the calculated infiltration rates in Table 7 (overleaf). The graphs used to calculate the soil infiltration rates are included in Appendix 10.
- 6.9.5 Test location SA1 collapsed during the initial test, therefore a second test pit was excavated adjacent to it. Due to the slow infiltration rates on each location the water level did not drop below the 25% full depth on the majority of the tests (see test graphs in Appendix 10). To calculate the estimated soil infiltration rates the time / depth graphs were extrapolated to estimate the time taken for the pit to drain between 75% full and 25% full. The estimated soil infiltration rates are included in Table 7 below.

Table 7 - Summary of Calculated Soil Infiltration Rates

Test Location	Depth (m)	Trial Number	Approximate Infiltration Rate	Comments	
SA1	2.50	1	Soak	away side wall collapsed - abandoned	
SA1A	2.60	1	6.13 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – did not extend to 25% full ED	
SAIA	2.00	2	4.98 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – did not extend to 25% full ED	
		1	3.69 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
SA2	2.30	2	4.00 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – did not extend to 25% full ED	
		3	3.24 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
		1	8.38 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just short of 75% full ED	
SA3 2.40		2	4.61 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just short of 75% full ED	
		3	5.41 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just short of 75% full ED	
		1	5.91 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
SA4 2.60		2	3.92 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just short of 50% full ED	
			3.53 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
		1	3.79 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
SA5	2.04	2	3.30 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
	3 2.96 x 10⁻⁶ ms⁻¹ E		2.96 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
		1	5.40 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 25% full ED	
SA6	2.60	2	7.94 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just short of 25% full ED	
		3	5.63 x 10 ⁻⁶ ms ⁻¹	Extrapolated result – just reached 50% full ED	

ED – Effective Depth

- 6.9.5 BRE 365 indicates that the lowest soil infiltration rate should be used to assess the suitability of the soils, these are identified in bold.
- 6.9.6 With the exception of SA1, three tests were completed at each location between 19 August 2019 and 22 August 2019 within the natural weathered materials of the Chester Formation. Based on the results of the soakaway testing estimated infiltration rates of between 2.96 x 10^{-6} ms⁻¹ and 8.38 x 10^{-6} ms⁻¹ have been calculated. The tests were generally undertaken in accordance with BRE Digest 365, however, due to the slow infiltration rates the time between 75% full and 25% full effective depths had to be estimated from the graphs.

^{♦ -} Based on extrapolated time / depth graphs

6.9.7 Based on the results of soakaway testing and associated assessments it is considered that the granular materials of the weathered Chester Formation underlying most of the site exhibit poor soil infiltration rates in respect of potential soakaway drainage. These materials are unlikely to be considered suitable for soakaway drainage.

6.10 Hard Strata

- 6.10.1 Hard strata (i.e. bedrock) was encountered within several of the exploratory hole locations between 1.5m and 2.85m below ground level.
- 6.10.2 TP05, TP07, DS03 and DS05 encountered extremely weak grey-green siltstone at the base of the trial pits and boreholes. Hard digging was recorded within the aforementioned trial pits and drilling progress refused within siltstone. These materials are considered to be representative of Retford Member strata.
- 6.10.3 TP01, TP02 and TP06 recorded hard digging at the base of the excavations. The material encountered was extremely weak pale grey brown sandstone representative of the Chester Formation.
- 6.10.4 The locations and depth to hard strata encountered during the recent site investigation works is illustrated on Drawing 19017-GE02.

6.11 Founding Horizon

- 6.11.1 The in-situ SPTs and laboratory geotechnical test results indicate that material of the weathered Retford Member and weathered Chester Formation would generally provide suitable founding strata for the proposed 2 to 3 storey residential housing. These materials are generally considered suitable for the construction of traditional strip and trench fill foundations at a minimum depth of 0.75m below existing ground level within the Chester Formation (low volume change potential) and 0.9m below existing ground level within the Retford Member (medium volume change potential). For preliminary design purposes it is recommended that a net allowable bearing pressure of 100kN/m² will be appropriate for the uppermost weathered component of the Chester Formation and 125kN/m² for the weathered Retford Member materials. The proposed net allowable bearing pressures would be suitable for a traditional strip or trench fill foundation up to 1m wide; settlements would be restricted to less than 25mm for such a foundation. If greater bearing pressures are required foundations could be deepened, a net allowable bearing pressure of 150kN/m² would be applicable for foundations in the order of 2.0m below existing ground level.
- 6.11.2 The cohesive materials of the Retford Member have been classified as having medium volume change potential; the localised cohesive materials of the Chester Formation have been classified as having a low volume change potential and are therefore susceptible to shrinkage / heave within influencing distance of trees. Foundations are required to be deepened for plots located within the influencing distance of trees. Heave protection measures may also be required to be installed within localised plots located within close proximity to existing trees or hedgerows.
- 6.11.3 Given the general absence of cohesive (clay based) materials and made ground across most of the site, plus low concentrations of ground gas, ground bearing floor slabs may be acceptable across majority of the proposed development area. However suspended / beam and block floor slabs will be required in areas of identified tree influence.
- 6.11.4 Foundation considerations are discussed in further detail within Section 8 of this report.

6.12 Ground Gases

- 6.12.1 Due to the potential for ground gases to be produced from the adjacent made ground to the north of the site and the landfill to the south east, four standpipes have been installed within boreholes DS01, DS03, DS05 and DS06 to assess the gas regime at the site. The standpipes were monitored on four occasions between 01 August and 13 September 2019. The results of the monitoring visits are included as Appendix 9
- 6.12.2 Methane has not been encountered at the site. Concentrations of carbon dioxide ranged from 0.7% to 6.0% and showed a general decrease during the monitoring period. Detectable flow rates were not recorded within any of the monitoring wells
- 6.12.3 A ground gas assessment has been undertaken on the results of the recent monitoring and is included within Section 8.

7. PRELIMINARY CONTAMINATION ASSESSMENT

7.1 Human Health Risk Assessment

7.1.1 Data obtained from the site investigation has been used to assess the contamination status of the site. We have utilised the current technical guidance published by the Environment Agency (EA) i.e. their Contaminated Land Exposure Assessment (CLEA) model. The Chartered Institute of Environmental Health (CIEH) and Land Quality Management (LQM) published updated Suitable for Use Levels (S4ULs) in January 2015 for a number of potential contaminants of concern (COC). These include those with previously published soil guidance values (SGVs) available from the EA. The published S4ULs are designed to be used as generic screening values. The S4ULs have been produced to incorporate updates to toxicological data, where available, together with adaptations to the exposure modelling originally proposed by Defra in the production of Category 4 Screening Levels (C4SL). However, unlike the C4SLs, the S4ULs are still based on the concept of minimal risk and are considered appropriate for use in generic quantitative risk assessment (GQRA). The S4UL have been used in accordance with following:-

"Copyright Land Quality Management Ltd reproduced with permission; Publication number S4UL3689. All rights reserved".

- 7.1.2 Where available, Generic Assessment Criteria (GAC) values published by the Environmental Industry Commission (EIC) have been used for substances with no published S4UL. There are a number of additional potential Contaminants of Concern (COC) where there is currently no available guidance based on minimal risk and/or it is not considered appropriate to derive in-house GAC values using the CLEA model. The initial screening of geochemical results for these contaminants has therefore been undertaken in accordance with the following principles:
- 7.1.3 Screening values have been derived to assess the potential significance of low levels of two organochlorine dichlorodiphenvldichloroethane based insecticides, (DDD) dichlorodiphenyltrichloroethane (DDT). The CLEA model (v1.071) has been used to provide initial assessment criteria based on a standard clay soil with a conservative soil organic matter (SOM) content of 1% for a residential land use with gardens ('residential with produce'). The default CLEA exposure parameters have been amended in accordance with Tables 1 to 3 of the LQM/CIEH S4ULs for Human Health Risk Assessment document, dated 2015 and are comparable to the published S4ULs. Toxicological and physio-chemical parameters from the Risk Assessment Information System (RAIS) from the University of Tennessee have been used within the CLEA model. The RAIS system utilises a United States Environmental Protection Agency (US EPA) hierarchy to select relevant data for the required parameters. The assessment is therefore based on the following parameters:
 - An excess lifetime cancer risk (ELCR) of 1 in 100,000 has been used based on 'minimal risk'.
 - A 70kg adult breathes 20m³ of air per day.
 - The most conservative route (oral or inhalation) has been assumed, as appropriate.
 - Dermal exposure routes have been compared with oral health criteria values; a conservative estimate using oral and inhalation exposures have been combined to derive the assessment criteria.
- 7.1.4 With regard to lead the former SGV for residential land uses of 450mg/kg (now withdrawn) was formally recognised guidance in the UK as representing a level of minimal risk. However, review of toxicological research has indicated that lead may affect IQ in children even at low exposures; the value of 450mg/kg is therefore not considered suitably protective. The Category 4 Screening Level (C4SL) for lead, published by Defra in March 2014, related to the revised Part 2A statutory guidance

based on a low level of toxicological concern (opposed to minimal risk) is 200mg/kg for the standard residential with homegrown produce land use. This level is considered conservative and appropriate as an initial screening value for the site.

- 7.1.4 It is understood that proposals for the Eakring Road site comprise residential housing, gardens, landscaping and associated infrastructure plus a retail unit. For the purposes of this initial assessment published screening criteria for a 'residential with plant uptake' land use has therefore been used in this assessment to assess the most sensitive potential end use for the site.
- 7.1.5 Assessment criteria for organic contaminants vary dependent on the soil organic matter (SOM) content of the material. A conservative value of 1.0% SOM has been applied to all soils for the purposes of this initial assessment.
- 7.1.6 In accordance with current best practice outlined within 'guidance on Comparing Soil Contamination Data with a Critical Concentration' (May 2008) published by CL:AIRE we have reviewed the borehole and trial pit logs to determine any differences within the soil types encountered at the site. Two main material types have been identified i.e. top soil and weathered bedrock, as described in the following text. To provide an assessment of the geochemical nature of the near surface materials selected samples were scheduled for laboratory analysis as summarised in Table 7.

Table 7 - Laboratory Testing Summary

Test	Topsoil / Subsoil	Weathered Chester Formation	Weathered Retford Member
Travis Baker Greenfield Suite	14	6	-
Speciated Polyaromatic Hydrocarbons (PAHs)	9	-	-
Organophosphorus Insecticides	3	-	-
Organochlorine Insecticides	3	-	-
BRE SD1	-	5	3

TB Suite: Travis Baker Greenfield Suite – commonly occurring UK contaminants (metals and metalloids including arsenic, boron, cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc).

- 7.1.7 A copy of the laboratory testing results is included within Appendix 7. An initial assessment of the data has been undertaken by directly comparing the laboratory test results to the relevant published screening values. For ease of reference, the guidance values applied for our assessment and a summary of the results of the assessment are also included in Appendix 7. Based on this initial assessment slightly elevated levels of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene were identified within the topsoil materials at two locations, to determine the significance of these elevated values we have undertaken a statistical assessment on the data.
- 7.1.8 Initially each data set has been investigated using 'Grubbs Test' to determine whether there are any statistical outliers within the data set. Where outliers have been identified we have revisited the trial pit and borehole logs to determine whether there are any obvious sources for the elevated value(s). If the logs indicate a clear material difference between the soil sample containing the outlier and the remaining soils then the data for that sample can be removed and assessed independently. Where there is no clear cause for the outlier we have assumed that the selected values are representative of the population. The outliers have therefore been retained within the data set for subsequent statistical analysis.

- 7.1.9 Following the removal of outliers, where applicable, both a Shapiro-Wilk Normality Test and a visual check are undertaken to determine whether the data set has a 'normal' or 'non normal' distribution. For data with a 'normal' distribution the 'one sample T Test' is used to calculate the 95th percentile confidence level. Where the data set forms a 'non-normal' distribution the Chebychev Theorem is used to determine the 95th percentile confidence level. This 95th percentile value is then compared with the relevant critical concentration (i.e. S4UL / C4SL / EA CLEA) guidance value.
- 7.1.10 The results of the statistical analysis for the elevated determinands are detailed in the following sections. The logs for the boreholes and trial pits do not identify any significant sources of contamination therefore as an initial assessment, no samples have been removed from the datasets.

7.2 Topsoil

- 7.2.1 Nine samples of topsoil were tested for a suite of contaminants commonly found on UK greenfield sites (including heavy metals and metalloids) and a suite (USEPA16) of polyaromatic hydrocarbons (PAHs). A further three samples were tested for suites of organophosphorus and organochlorine insecticides. The majority of the determinands tested were below their relevant guidance values (i.e. Suitable for Use Levels or Category 4 Screening Level in the case of lead) for the samples of topsoil. Elevations of PAH were encountered at two locations within the eastern area of the site:
 - TP03 (0.1m to 0.2m) slightly elevated levels of benzo(a)pyrene (3.6mg/kg), benzo(b)fluoranthene (2.8mg/kg) and dibenzo(ah)anthracene (0.5mg/kg);
 - TP07 (0.2m to 0.3m) slightly elevated levels of benzo(a)pyrene (7.6mg/kg), benzo(b)fluoranthene (6.2mg/kg) and dibenzo(ah)anthracene (1.6mg/kg).
- 7.2.2 We have reviewed the trial pit logs to determine whether there are any noticeable differences between the top soil identified at TP03 and TP07 and top soil in the remaining samples tested. There is no discernible difference in the soil descriptions, on this basis we have carried out statistical analysis on the full data sets. The 95th percentile values of the aforementioned determinands are shown in Table 8 below.

Table 8 – Top Soil - 95th Percentile Values of Elevated Determinands

Determinand	Guidance Value (mg/kg)	95 th Percentile (mg/kg)	Times Above Guidance Value
Benzo(a)pyrene	2.2	5.16	2.3
Benzo(b)fluoranthene	2.6	4.17	1.6
Dibenzo(ah)anthracene	0.24	1.04	4.3

- 7.2.3 The 95th percentile values for benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene are all above their relevant guidance values therefore some form of remediation will be required to protect the human health of future site users form the elevated concentrations of PAH identified locally at the site.
- 7.2.4 Although no obvious visual difference was observed within the topsoil sampled at TP03 and TP07 to the remainder of the site. Further consideration to the presence of anomalous PAH contamination at TP03 and TP07 will be required (see section 8.6).
- 7.2.4 Three samples of topsoil were tested for organophosphorus insecticides and organochlorine insecticides. The levels of DDD and DDT tested are below the calculated guidance values. The

levels of remaining determinands tested were at or below the detection limit of the analysis (0.01mg/kg).

7.3 Undisturbed Near Surface Weathered Rock

- 7.3.1 Six samples of undisturbed natural soils were tested for a suite of contaminants commonly found on UK greenfield sites (including heavy metals and metalloids). The determinands tested were below their relevant guidance values (i.e. Suitable for Use Levels or Category 4 Screening Level in the case of lead) for undisturbed natural weathered rock materials.
- 7.3.2 Based on the results of the chemical analysis, the weathered rock comprising sand and clay materials are considered suitable for re-use within the proposed development.

7.4 Controlled Waters

7.4.1 Based on the results of the soil contamination testing, the risk posed to controlled waters i.e. the underlying Principal Aquifer and Secondary Aquifer from the proposed development is considered to be low.

8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Potential Development Constraints

- 8.1.1 Based on the results of the background researches and site investigations it is considered that the following ground related issues and potential development constraints would need to be addressed prior to the proposed development of the Eakring Road, Bilsthorpe site:
 - The presence of near surface cohesive (clay) materials which have a low to medium volume potential (i.e. the potential to heave and shrink due to tree influence);
 - The presence of mature and semi-mature trees and hedgerows at the periphery and within influencing distance of the site;
 - The presence of hard strata at shallow depth locally within the development area;
 - The presence of a slightly elevated levels of benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene in topsoil materials present within the eastern area of the site;
 - Underlying soils of low permeability which are likely to be unsuitable for an appropriate soakaway drainage design;
 - The presence of a recorded water main beneath the centre of the site trending north east south west;
 - The presence of an underground electricity cable in the north east corner of the site.

8.2 Foundations

8.2.1 The boreholes have identified 0.3m to 0.7m of topsoil and subsoil materials across the site. Given the limited depth of these soils any future foundations will extend below this horizon. Other than topsoil, the exploratory holes have not recorded any made ground across the site. Based on the desk based researches and site investigations, no significant deposits of made ground are anticipated.

Weathered Retford Member

- 8.2.2 Underlying the top soil materials within the eastern extent of the site, the boreholes generally identified grey and orange gravelly, sandy, silty clays. It is considered that these shallow clay materials represent weathered strata of the Retford Member which are recorded to underlie the site.
- 8.2.3 The in-situ testing (SPT / HSV) and site observations indicate that the near surface weathered Retford Member materials typically display stiff grading to very stiff strength consistencies with depth. It is considered that these soils will generally provide a suitable founding horizon for two and three storey housing utilising traditional strip or trench fill foundations. For the uppermost weathered component of the Retford member materials a net allowable bearing pressure of 125kN/m² is considered appropriate for preliminary foundation designs. The proposed net allowable bearing pressures would be suitable for a traditional strip or trench fill foundation up to 1m wide; on this basis settlements would be restricted to less than 25mm for such foundations. If greater bearing pressures are required foundations could be deepened, a net allowable bearing pressure of 150kN/m² would be applicable for foundations in the order of 2.0m below existing ground level.

Weathered Chester Formation

- 8.2.5 Underlying the topsoil materials across the remainder of the site (i.e. western and central areas), red brown and brown gravelly (occasionally silty and clayey) sands were encountered. It is considered that these granular materials represent the upper weathered extent of Chester Formation strata recorded to directly underlie to majority of the site.
- 8.2.6 The in-situ testing (SPTs) and site observations indicate that the granular materials typically display medium dense, grading to dense and very dense strength consistencies with depth. It is considered that these soils will generally provide a suitable founding horizon for two and three storey housing on traditional strip and trench fill foundations. Within the uppermost weathered zone of the Chester Formation, a net allowable bearing pressure of 100kN/m² is considered appropriate for preliminary design purposes for strip foundations up to 1m wide, this will limit total settlements to less than 25mm. The strength characteristics of these materials increase with depth; if greater bearing pressures are required, it is considered that a net allowable bearing pressure of 150k/Nm² would be achievable at a depth of 2.0m below existing site levels.

General

- 8.2.9 All strip and trench fill foundations should extend through any topsoil and made ground (if encountered) to a minimum depth of 0.75m (Chester Formation) or 0.90m (Retford Member) below original ground level or proposed ground level, whichever the deeper. Future foundations should extend a minimum of 0.15m into competent undisturbed natural soils (i.e. medium dense to dense sand or stiff to very stiff clay). If any loose sand or soft clay is encountered at the proposed founding level, the footing should be extended into the underlying competent natural material below. Alternatively, any materials deemed unsuitable for founding should be removed and replaced lean mix concrete or granular soils compacted in layers.
- 8.2.10 There are a number of trees and hedgerows around the periphery of the site. Shallow clay based soils have been identified locally, particularly within the eastern area of the site which is underlain by weathered Retford Member materials. Clay based soils have the potential to shrink or swell when moisture contents are influenced by tree root action. Geotechnical testing has confirmed that the clay based deposits at the Eakring Road site have a low (Chester Formation) to medium (Retford Member) volume change potential. Subsequently, potential founding depths will need to be extended where the proposed house plots are within the influencing distance of proposed or existing trees and/or hedgerows. Chapter 4.2 of the NHBC Standards provides advice in this regard.
- 8.2.11 To confirm the depths of proposed foundations a tree survey will be required to verify the species and heights of the trees within the site and around the periphery.

8.3 Floor Slabs

8.3.1 Ground bearing floor slabs could potentially be used on site where plots are outside the influence of any trees and where competent (non-desiccated) undisturbed soils are identified within 600mm of the underside of floor slab construction. Allowances should be made for suspended floor slabs for all plots that are influenced by trees. It may be possible to adopt ground bearing slabs for much of the site, but only on those plots where levels are not being raised significantly and where there is no evidence of desiccation of the near surface soils.

8.4 Concrete Conditions

8.4.1 Sulphate and pH chemical analysis results have been compared to BRE Special Digest 1 (Concrete in Aggressive Ground). Based on the results of the chemical analysis the Design Sulphate class for

the superficial clays has been determined as DS-1 and the Aggressive Chemical Environment for Concrete Class is AC-1s.

8.5 Hard Strata

8.5.1 The exploratory boreholes achieved depths of between 1.52m and 3.0m. Bedrock (extremely weak sandstone) was encountered locally within the northern and southern areas of the site at depths of 2.0m to 2.5m below ground level. In addition, siltstone has been encountered along the eastern boundary of the site at depths of 1.4m to 1.94m. It is anticipated that excavations to say 2.5m should be achievable with standard construction excavation plant and equipment across the majority of the site. However, breaking out of hard strata may be required locally.

8.6 Contamination

- 8.6.1 Representative samples of topsoil and weathered bedrock materials from across the site have been analysed for a series of contaminants of concern identified in the conceptual site model presented within Section 6. Laboratory testing included metals, non-metals, polyaromatic hydrocarbons, organophosphorus and organochlorine insecticides. The chemical test results relating to the topsoil and underlying undisturbed natural soils have identified typically low contaminant concentrations which do not generally exceed the respective target values (i.e. acceptable levels) for residential gardens and associated landscape areas.
- 8.6.2 The majority of topsoil analysis identified low contaminant concentrations which are considered typical of natural reworked topsoil. However, at two locations within the eastern extent of the site, elevated concentrations of polyaromatic hydrocarbons (PAH) were encountered as summarised in the following:
 - TP03 (0.1m to 0.2m) slightly elevated levels of benzo(a)pyrene (3.6mg/kg), benzo(b)fluoranthene (2.8mg/kg) and dibenzo(ah)anthracene (0.5mg/kg)g);
 - TP07 (0.2m to 0.3m) slightly elevated levels of benzo(a)pyrene (7.6mg/kg), benzo(b)fluoranthene (6.2mg/kg) and dibenzo(ah)anthracene (1.6mg/kg).
- 8.6.3 No statistical outliers were identified within the data set relating to the topsoil PAH analysis, therefore all results have been initially included within the statistical analysis undertaken to determine the significance of the identified contamination. The 95th percentile for benzo(a)pyrene (5.16mg/kg), benzo(b)fluoranthene (4.17mg/kg) and dibenzo(ah)anthracene (1.04mg/kg) all exceed their relevant guidance values (2.2mg/kg, 2.6mg/kg and 0.24mg/kg respectively). There is no obvious visual difference was between the topsoil sampled at TP03 and TP07 to samples obtained from the remainder of the site.
- 8.6.4 Given greenfield nature of the site and that the top soil materials generally appear to be naturally occurring, the source of the PAH contamination is not immediately obvious. It is possible that the source could be windblown deposits from the former Bilsthorpe Colliery and associated spoil heaps that bound the site to the north and east.
- 8.6.5 To further assess the significance of the PAH contamination identified at TP03 and TP07 it is recommended that additional sampling and testing be undertaken to establish the extent of the PAH impacted soils and also to increase the size of the data set relating to topsoil materials in general to undertake additional statistical analysis if required.

- 8.6.6 Once the extent of the contaminated topsoil has been established, to protect future site users from the PAH impacted soil, these materials will require some form of remediation. The available data suggests that the materials could be placed below a suitable clean cover capping layer at a depth 550mm (garden areas) or 400mm (public open space). Alternatively, the PAH impacted topsoil materials could be stripped and removed from the site.
- 8.6.7 All determinands tested within the underlying weathered materials of the Chester Formation and the Retford Member were below their relevant guidance values. These materials are therefore considered suitable for reuse within the proposed development site.
- 8.6.8 The results of this human health risk assessment should be provided to the Local Authority Environmental Health Officer for their comments.

8.7 Contamination – Controlled Waters

8.7.1 Chemical testing has indicated that the contaminant levels across the site are generally low. Based on the results of the soil contamination testing, the risk posed to controlled waters (i.e. underlying aquifer and local surface waters) from the proposed development area is considered to be low.

8.8 Ground Gases

- 8.8.1 Desk study researches did not indicate any significant sources of ground gases on or within the immediate vicinity of the site. In addition, no deep made ground or organic rich materials were encountered at the site during the course of the intrusive site investigation works.
- 8.8.2 Gas and groundwater monitoring standpipes were installed within four of the dynamic sampling boreholes on request. The standpipes have been monitored on four occasions to date. Measurement of the concentrations of oxygen, carbon dioxide, methane and associated gas flow rates were undertaken to assess the geo-gas regime of the site.
- 8.8.3 The monitoring undertaken at the site has identified carbon dioxide concentrations of 0.7% to 6.0%. Typical carbon dioxide values were <5%. Methane has not been encountered at the site. Detectable gas flow rates have not been recorded within any of the boreholes installed across the site.
- 8.8.4 To evaluate the gas regime at the site and assess the requirements for gas precautionary measures with respect to ground gases within the proposed development, reference has been made to the CIRIA Document C665: Assessing Risks Posed by Hazardous Ground Gases to Buildings, 2007. CIRIA C665 proposes a "traffic light" classification system adopted by the National House Building Council (NHBC) based on the typical maximum gas concentrations and the flow rates. It also details an alternative method of assessment i.e. the 'Modified Wilson and Card classification' which introduces 'Characteristic Situations 1 to 6' to define the gas regime.
- 8.8.5 In accordance with the two classification systems outlined above, a site specific Gas Screening Value (GSV) has been calculated based on a 'worst case' scenario in order to establish whether protection measures will be required for the proposed development. The calculated GSV is used to characterise the site using the traffic light system and appropriate protection measures summarised from CIRIA C665.
- 8.8.6 We have undertaken an initial assessment based on the available data. Based on the maximum carbon dioxide and applied flow rate of 6.0% and 0.1l/hr, respectively, the GSV for carbon dioxide is 0.006l/hr. On this basis the site would be classified as 'Green' in accordance with the NHBC

classification or 'Characteristic Situation 1' in accordance with the Modified Wilson and Card Method. These classifications indicate a negligible gas regime and consequently site specific gas protection measures would not generally be considered necessary. Slightly elevated concentrations of carbon dioxide (>5%) were identified on a single occasion. Given the very flow rates such levels are not considered significant. Furthermore, the site is not located within an area that requires radon protective measures.

8.8.7 The results of the ground gas risk assessment should be provided to the Local Authority and NHBC for comment and review.

8.9 Groundwater / Excavation Stability

- 8.9.1 All of the boreholes and trial pits remained dry during site investigations. During the monitoring period, groundwater was encountered at one location (DS06) at depths of 1.36m bgl and 1.43m bgl. Given that shallow groundwater was generally absent during the site investigation and that the exploratory holes remained open, significant dewatering and excavation support are unlikely to be required for the majority of the site. However, groundwater levels can vary significantly throughout the year depending on seasonal variations etc. At certain times of the year the groundwater levels may be shallower than those identified in the boreholes during the site investigation works.
- 8.9.2 All of the exploratory hole locations remained stable during the works. It should be noted that the exploratory holes were only open for a short period therefore trenches may be less stable if left open for a longer period of time. Based on the conditions encountered it is considered that shallow services trenches and footings should remain stable within the weathered Retford Member within the eastern area of the site. However, localised trench support may be required within the granular materials of the weathered Chester Formation.

8.10 Soakaway Drainage

8.10.1 Soakaway testing was completed within the granular material of the weathered Chester Formation at six locations across the proposed development site, the results are described in Section 6. Based on the results of the in-situ testing undertaken over a three day period, the materials underlying the site are not considered suitable for soakaway drainage.

8.11 Existing Services

8.11.1 Consideration will need to be given to the location of existing services on and within close proximity to the proposed development including the presence of the underground water main (trending north east-south west) and underground electricity cable in the north east corner of the site.

APPENDIX 1

List of Information Sources

APPENDIX 1

LIST OF INFORMATION SOURCES - EAKRING ROAD, BILSTHORPE

The following principal sources of information have been consulted in the preparation of this report:

- Coal Authority on-line data base;
- Environment Agency Online data base;
- Ordnance Survey County Series and National Grid Mapping;
- British Geological Survey Online data base & Interactive mapping;
- BS5930 Code of Practice for Site Investigation (2015);
- BS10175:2011 + A2:2017 British Standards Institution (2011) Investigation of Potentially Contaminated Sites;
- BS1377-2:1990 Methods of test for soils for civil engineering purposes
- BS EN ISO 14688-2:2018 Geotechnical Investigation and Testing. Principles for Classification.
- EA R&D Publication 66 : 2008 Guidance for the Safe Development of Housing on Land Affected by Contamination Volume 1 and 2
- CIRIA publications including C665 Assessing risks posed by hazardous ground gases to Building;
- Contaminated Land Report 11 Model Procedures for the Management of Land Contamination (DEFRA 2004);
- Chartered Institute of Environmental Health (CIEH) and Land Quality Management (LQM) S4ULs for Human Health Risk Assessment (2015) – Publication Number S4UL3689
- Environmental Protection Act 1990, Part 2A, Section 78 (as amended by Environment Act 1995);
- Contaminated Land Statutory Guidance (April 2012), DEFRA
- Environment Agency (2000) Technical Aspects of Guidance of Site Investigation (2 volumes) R&D Technical Report P5-065;
- Environment Agency (2000) Secondary Model Procedures for the development of Appropriate Soil Sampling Strategies for Land Contamination, R&D Technical Report P5-066;
- BRE (2005) Concrete in aggressive ground, Special Digest 1;
- BRE (2015) Radon Guidance on protective measures for new buildings, BR 211;
- BRE (2004) Clean Cover Systems for Land Regeneration Thickness Design of Cover Systems for Contaminated Land.
- MAGIC Website magic.defra.gov.uk
- Information provided to Travis Baker Geo-Environmental:
 - Planning Layout Reference P-01 Revision D
 - Topographical Survey Oakes Surveys Ltd dated 25/01/2017
 - Preliminary Utilities Appraisal Rodgers Leask dated May 2017
 - Phase 1 Desk Study Rodgers Leask Environmental dated 17 March 2017
 - Desktop Services Search Site Vision Surveys dated 26/06/2019

APPENDIX 2

Site Photographs

EAKRING ROAD, BILSTHORPE APPENDIX 2 - SELECTION OF SITE PHOTOGRAPHS

Looking west at site access

Looking north along western boundary

Looking north west at north western corner

Looking south at eastern boundary and bank

Raised bank in south east of the site

Looking west at south western corner

Spoil heap of TP07 showing siltstone of the Retford Member encountered at base

Spoil heap of TP01 showing weathered sands of the Chester Formation

Conceptual Site Model and Qualitative Risk Assessment

Eakring Road, Bilsthorpe Appendix 3

Conceptual Site Model and Qualitative Risk Assessment

	Conceptual Model			Qualitative Ris	k
Source	Pathway	Target	Consequence	Probability	Risk
	Tubalatian	Residents of site and public	Severe	Low	Moderate
	Inhalation	Construction worker	Severe	Low	Moderate
	Dames I south at	Residents of site and public	Medium	Low	Moderate / Low
	Dermal contact	Construction worker	Medium	Low	Moderate / Low
Made Ground – including disturbed topsoil / localised infilling	Turneling of sail	Residents of site and public	Consequence Probabilit Severe Low Severe Low Medium Low	Low	Moderate
(metals, metalloids, sulphate, polyaromatic hydrocarbons, petroleum	Ingestion of soil	Construction worker	Severe	Unlikely	Moderate / Low
hydrocarbons, pH, pesticides,	Direct contact	Drinking water pipes	Medium	Unlikely	Low
sbestos)	Ingestion via home grown vegetables	Residents of site	Severe	Low	Moderate
	Uptake via flora and fauna	Plants, pets and wildlife	Medium	Unlikely	Low
	Migration of contaminants via groundwater	Controlled waters	Medium	Unlikely	Low
	Direct contact	Foundations and other buried structures	Medium	Unlikely	Low
Localised made ground associated	Tabalatian of mariana and	Residents of site	Severe	Unlikely	Moderate/Low
with the railway and landfill (leading	Inhalation of noxious gases	Construction worker	Severe	Unlikely	Moderate/Low
to production of carbon dioxide and	Migration and collection of methane in	Residents of site	Severe	Unlikely	Moderate/Low
methane)	confined spaces	Construction worker	Severe	Unlikely	Moderate/Low
	Downsol control	Residents of site and public	Medium	Low	Moderate/Low
Agrochemicals – including the historic agricultural application of insecticides	Dermal contact	Construction worker	Medium	Low	Moderate/Low
(organochlorine and organophosphorus insecticides) and	Industrian of sail	Residents of site and public	Severe	Low	Moderate
the possible current use on adjacent land	Ingestion of soil	Construction worker	Severe	Unlikely	Moderate/Low
	Direct contact	Drinking water pipes	Medium	Unlikely	Low

Eakring Road, Bilsthorpe Appendix 3 Conceptual Site Model and Qualitative Risk Assessment

	Conceptual Model						
Source	Pathway	Target	Consequence	Probability	Risk		
	Inhalation of vapours	Residents of site and public	Severe	Low	Moderate		
(Continued)	Inhalation of vapours	Construction worker	Severe	Low	Moderate		
Agrochemicals – including the historic agricultural application of insecticides	Uptake via flora and fauna	Plants, pets and wildlife	Medium	Unlikely	Low		
(organochlorine and organophosphorus insecticides) and	Migration of contaminants via groundwater	Controlled waters	Medium	Unlikely	Low		
the possible current use on adjacent land	Direct contact	Foundations and other buried structures	Medium	Unlikely	Low		
	Ingestion via home grown vegetables	Residents of site	Medium	Low	Moderate / Low		

Dynamic Sampling Borehole Logs

travis baker	Travis Ba	ıker (Geo-Environ	al Ltd	Site Eakring Road, Bilsthorpe			Number DS01		
Excavation Drive-in Win	Method dowless Sampler	Dimens	ions	Ground	Level (mOD)	Client Keepmoat Homes		N	ob lumb 1901	
			n (Handheld GPS) efer to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environmental		S	heet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	In	str
0.00-0.10	D				(0.35)	Grass onto brown slightly clayey slightly gravelly sand with roots and rootlets. TOPSOIL				
0.45-0.55	D				- 0.35 - (0.10) - 0.45 - (0.10) - 0.55	Light brown slight clayey slightly gravelly sand with rare rootlets. Gravel is fine to coarse subrounded quartzite. SUBSOIL			90°0	39000
0.70-0.80	D				(0.45)	Firm to stiff brown with localised light grey mottling very sandy gravelly CLAY. Gravel is fine to coarse rounded quartzite. Brown slightly red slightly gravelly SAND. Gravel is				60 00 00 00 00 00 00 00 00 00 00 00 00 0
1.00-1.45	SPT N=14		2,2/3,3,3,5		1.00	fine to coarse rounded quartzite. (Weathered Chester Formation) Medium dense red brown slightly gravelly medium grained SAND with gravelly pockets. Gravel is fine to coarse rounded quartzite. (Weathered Chester Formation)			2 - 1000	్లో గ్రామంలో అంటే క్రామంలో క్లామంలో క్లామంలో క్లామంలో క్లామంలో క్లామంలో క్లామంలో క్లామంలో క్లామంలో క్లామంలో కూ ఇక్కామంలో క్లామంలో క్లామంలో క్లామంలోకి క్లామంలో క్లామంలో క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామంలో క్లామంలో క్లామంలో క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామంలోకి క్లామ
2.00-2.36	SPT 50/205		10,15/16,18,16			Terminated at 2.36m			PARTE	NF 3 o
Remarks Refusal at 2 Monitoring s	.36m tandpipe installed						Scale (approx)		ogge	
							1:25 Figure N	No.	Glov	'er

Travis Baker Geo-Environment				nenta	ental Ltd		Site Eakring Road, Bilsthorpe	Numb DS0	
Excavation Drive-in Wir	Method ndowless Sampler	Dimens	ions	Ground	Level (mO	D)	Client Keepmoat Homes	Job Numb	
			n (Handheld GPS) fer to plan	Dates 29)/07/2019		Engineer Travis Baker Geo-Environmental	Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thicknes	ss)	Description	Legend	Water
0.00-0.10	D D					5)	Grass onto brown slightly clayey slightly gravelly sand. Gravel is fine to coarse rounded quartzite. TOPSOIL Brown slightly red very gravelly SAND. Gravel is fine to coarse rounded quartzite and 1 broken cobble of quartzite. (Weathered Chester Formation) Red brown loose becoming very dense from 2m SAND with rare gravel of coarse rounded quartzite and pockets of pale red yellow sand at 0.8m and 1.9m (Weathered Chester		K///X///X/3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
0.80-0.90	D				 - -		red yellow sand at 0.8m and 1.9m (Weathered Chester Formation)		1000000
1.90-1.93	SPT 25*/15 50/15		25/50		- (1.2	13	Terminated at 1.93m		
Remarks Refusal at 1	.93m	1		<u> </u>	<u> </u>		Scale (approx)	Logge By	⊥ed
							1:25	L Glov	⁄er
							Figure I	No. 17.DS02	

travis baker	Travis Ba	ıker (Geo-Environ	al Ltd	Site Eakring Road, Bilsthorpe				er)3	
Excavation Drive-in Wir	Method dowless Sampler	Dimens	ions	Ground	Level (mOD)	Client Keepmoat Homes		N	ob lumb 1901	
			n (Handheld GPS) efer to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environmental		S	heet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.00-0.10 0.10-0.20 0.40-0.50 0.60-1.00 1.00-1.45	D D SPT N=50 SPT 25*/10 50/10		2,2/5,5,10,30 25/50		- (0.10) - (0.20) - (0.30) - (0.90) - (0.20) - (0.20) - (0.20) - (0.12) - (Grass onto firm brown sandy slightly gravelly clay with rootlets. TOPSOIL. Stiff brown very sandy clay with rare gravel of fine to medium subrounded quartzite. SUBSOIL. Very stiff light grey and orange mottled slightly sandy slightly silty CLAY with siltstone lithorelicts from 1 m. (Weathered Retford Member) Very dense light grey slightly clayey SAND. (Weathered Retford Member) Recovered as gravel of extremely weak grey SILTSTONE. (Weathered Retford Member) Terminated at 1.52m	e			
Remarks Monitoring s Refusal at 1	tandpipe installed .52m						Scale (approx) 1:25 Figure N	L No.	ogge y Glov	
							1901		S03	

travis baker	Travis Ba	ker (Geo-Environm	nenta	al Lto	b	Site Eakring Road, Bilsthorpe		Number DS04		
Excavation Drive-in Wir	Method ndowless Sampler	Dimens	ions	Ground	Level (mo	OD)	Client Keepmoat Homes		Job Numb		
			n (Handheld GPS) efer to plan	Dates 29	9/07/2019		Engineer Travis Baker Geo-Environmental		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickne	h ess)	Description		Legend	Water	
0.00-0.10	D				(0.4	45) .45	Grass onto firm brown sandy slightly gravelly clay. Gra fine to coarse subrounded quartzite and rare brick fragments. TOPSOIL	avel is		\$ 11 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X	
0.50-0.60	D				(0.2		Stiff brown very sandy slightly gravelly clay. Gravel is t coarse rounded quartzite. SUBSOIL	fine to			
0.80-0.90	D				E	., 0			• • • •	_	
1.00-1.45	SPT N=15		3,4/4,4,3,4		3.0)	Í	Firm grey brown gravelly sandy CLAY. Gravel is fine t coarse rounded quartzite, broken quartzite cobble and chert. (Weathered Chester Formation)	d rare			
					(0.2		Medium dense brown slightly clayey gravelly SAND. G is fine to coarse rounded quartzite. (Weathered Chest Formation)				
2.00-2.37	SPT 50/220		11,12/13,16,21		(0.6	.37	Very dense red brown slightly gravelly medium grained SAND. (Weathered Chester Formation)	ed .			
Remarks							Terminated at 2.37m				
Remarks Refusal at 2	2.37m.						(ap	Scale pprox)	Logge By	d	
								1:50	L Glove	er	
							F	igure No	0. 7 DS04		

travis baker	Travis Ba	ker	Geo-Environ	al Ltd	Site Eakring Road, Bilsthorpe		Number DS05			
Excavation Drive-in Wi	n Method ndowless Sampler	Dimens	sions	Ground	Level (mOD)	Client Keepmoat Homes		N	ob lumber 19017	
			n (Handheld GPS) efer to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environmental		Si	heet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	r
0.00-0.10 0.30-0.40 1.00-1.45 1.10-1.20	D D SPT N=11 D		2,2/2,3,3,3		- (0.30) - (0.30) - (0.20) - (0.50) - (0.70) - (0.70)	Grass onto darnk brown slightly gravelly slightly clayey sand. Gravel is fine to coarse rounded quartzite. TOPSOIL Light brown slightly gravelly sand. SUBSOIL Medium dense brown slightly red SAND with rare gravel of coarse rounded quartzite. (Weathered Chester Formation)				20 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m
2.00-2.19	SPT 25*/75		25/32,18			Very dense red brown slightly gravelly SAND. Gravel is fine to coarse rounded quartzite. (Weathered Chester Formation)			\$\frac{\lambda{\text{2}}{\text{2}}\text{2}\tex	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	50/115				2.19	Terminated at 2.19m				
Remarks Refusal at 2 Monitoring	2.19m standpipe installed						Scale (approx)		ogged Y Glover	
							Figure 1	No.		

travis baker	Travis Ba	ker (Geo-Environn	nenta	al Ltd	Site Eakring Road, Bilsthorpe	Number DS06		
Excavation Drive-in Wi	n Method ndowless Sampler	Dimens	sions	Ground	Level (mOD)	Client Keepmoat Homes		N	ob umber 19017
			n (Handheld GPS) efer to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environmental		S	heet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00-0.10 0.20-0.30 0.70-1.00 1.00-1.45 1.10-1.20	D B SPT N=9 D SPT 25*/70 50/65		1,2/2,2,3,2 25/50		(0.20) -	Grass onto firm brown sandy clay with rare grave of fine to medium rounded quartzite with frequent rootlets. TOPSOIL Firm to stiff brown very sandy slightly gravelly cla with rare rootlets. Gravel is fine to medium rounded quartzite, sandstone, rare black flecks o coal and rare brick fragments. SUBSOIL Grey and orange mottled very clayey slightly gravel medium grained SAND. Gravel is fine to coarse subrounded quartzite. (Weathered Retform Member) Firm grey with localised orange mottling sandy slightly gravelly CLAY. Gravel is fine to medium rounded quartzite. (Weathered Retford Member) Stiff red very sandy CLAY with light brown coarse grained sandy pockets and rare siltstone lithorelicts. (Weathered Retford Member) Very stiff grey and orange laminated sandy silty CLAY. Orange laminations are very sandy clay, grey laminations are very sandy clay, grey laminations are very silty. (Weathered Retford Member) Recovered as gravel of extremely weak SILTSTONE. (Weathered Retford Member) Terminated at 1.94m	y f		
Remarks Monitoring Refusal at	standpipe installed. 1.935m						Scale (approx) 1:25 Figure 1	L lo.	ogged y Glover

Trial Pit and Soakway Pit Logs

travis baker	Travis Ba	ker (Geo-Environ	menta	al Ltd	Site Eakring Road, Bilsthorpe	Trial Pit Number TP01	
Machine : J		Dimens	ions	Ground	Level (mOD)	Client Keepmoat Homes		Job Number 19017
			n (Handheld GPS) fer to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environ	mental	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Water
0.10-0.20 0.70-0.80 1.20 1.30-1.50 1.40-1.50	D HSV 122.67kPa B D		140,130,98/Av. 122.67		(0.30) 1.10 (0.40) 1.50 (0.75) 2.25 (0.30) 2.55 (0.25) 2.80	quartzite. TOPSOIL. Brown (medium dense) sli gravelly SAND. Gravel is f with occasional quartzite opockets (Weathered Chester Gravelly Stiff red brown friable sammottling and occasional rebanding. (Weathered Chestiff red brown silty slightly sand partings and mudsto Chester Formation) Brown, orange brown and gravelly SAND. Gravel is (Weathered Chester Form	read brown (medium dense)	y clay
Plan .						Remarks Excavation remained dry an	d stable	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		 					Figure M.
						Scale (approx) 1:50	Logged By M Lane	Figure No. 19017.TP01

travis baker	Travis Baker Geo-Environmental Ltd				al Ltd	Site Eakring Road, Bilsthorpe			t er 2
Machine : J		Dimension	ns	Ground	Level (mOD)	Client Keepmoat Homes		Job Numbe 19017	- 1
			(Handheld GPS) r to plan	Dates 29	/07/2019	Engineer Travis Baker Geo-Environ	mental	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.50-0.60 1.30-1.60 1.60-1.70	D B D				(0.35) (0.65) (0.60) (0.60) (0.90) (0.35) (0.60) (0.90) (0.35) (0.35) (0.35) (0.35) (0.35) (0.35) (0.35)	quartzite. TOPSOIL. Brown (medium dense) ve SAND. Gravel is fine to co (Weathered Chester Forn Red brown (medium dens SAND. Gravel is fine to co occasional stiff red brown Formation) Red brown (medium dens slightly gravelly SAND locifine to coarse rounded qua Formation)	y slightly clayey slightly grave avel is fine to coarse rounded early gravelly, silty, slightly clayer arse rounded quartzite. "It is gravelly, silty, slightly clayer arse rounded quartzite with sandy clay. (Weathered Chee) fine and medium grain silty ally weakly cemented. Grave artzite. (Weathered Chester word of sandstoand matrix. (Weathered Chester and matrix. (Weathered Chester and matrix. (Weathered Chester and matrix.)	y ster	
Plan .		•			•	Remarks Excavation remained dry an	d stable		
					-				
		·			. s	Scale (approx)	Logged By M Lane	Figure No. 19017.TP02	

Travis Baker Geo-Environmental Ltd				al Ltd	Site Eakring Road, Bilsthorpe			Pit iber 03	
Machine : J		Dimension	ns	Ground	Level (mOD)	Client Keepmoat Homes		Job Num 190	
			(Handheld GPS) to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environ	mental	Shee	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leger	Water
0.10-0.20 0.40-0.50	D D				(0.30) (0.30) (0.30) (0.75) 1.35 (0.55) 1.90 1.10) 1.10)	TOPSOIL. Stiff red brown friable very Gravel is fine to coarse rounded processes occasional sand partings. Red brown (medium densifine to coarse rounded qual sandstone. (Weathered Coarse rounded pus sandstone) mottle grain gravelly SAND. Gravel	yey gravelly sand with fine coarse rounded quartzite. sandy slightly gravelly CLAY. Inded quartzite. (Weathered andy SILT. Locally clayey with (Weathered Chester Formatie) silty gravelly SAND. Grave artzite and extremely weak hester Formation) d pale grey silty fine and med rel is fine to coarse extremely sional quartzite. (Weathered	on) ************************************	
Plan .		•		•		Remarks Excavation remained dry an	d stable		
		•		٠					
		·				Scale (approx)	Logged By M Lane	Figure No.	03

travis baker	Travis Baker Geo-Environmental Ltd		al Ltd	Site Eakring Road, Bilsthorpe	Trial Pit Number TP04			
Machine : J		Dimensio	ns	Ground	Level (mOD)	Client Keepmoat Homes		Job Number 19017
			(Handheld GPS) r to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environ	mental	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Nate Variet
					(0.35) 0.35 (1.05) 1.40 (0.60) 1.40 (0.40) 2.40	quartzite. TOPSOIL. Brown becoming red brow slightly silty fine and medit Gravel is fine to coarse ro Chester Formation) Red brown (dense) silty fine locally weakly cemented.	y slightly clayey slightly gravavel is fine to coarse roundern below 0.9m (medium densum grain very gravelly SAND unded quartzite. (Weathered ne and medium grain SAND, Weathered Chester Formation and medium grain gravell cobbley with depth (hard digarise extremely weak sandstonation)	ion)
Plan .		•				Remarks Excavation remained dry an	d stable	
				•				
				-				
		٠				Scale (approx)	Logged By M Lane	Figure No. 19017.TP04

travis baker	Travis Ba	ker (Geo-Environ	menta	al Ltd	Site Eakring Road, Bilsthorpe		Trial Pit Number TP05
Machine : J		Dimens	ions	Ground	Level (mOD)	Client Keepmoat Homes		Job Number 19017
			n (Handheld GPS) fer to plan	Dates 29	0/07/2019	Engineer Travis Baker Geo-Environ	mental	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Water
0.20-0.30 0.50-0.60 0.90 0.90-1.00 0.90-1.00 1.40-1.70	D D HSV 97.33kPa B D B		110,90,92/Av. 97.33		(0.30) (0.90) 1.20 (0.30) 1.20 (0.30) 1.50 (0.30) 1.80	quartzite. TOPSOIL. Stiff pale grey green mottle CLAY with occasional red Retford Member) Very stiff red brown mottle with occasional fine and mandstone and siltstone piletford Member)	en sandy slightly gravelly cla aravel is fine to coarse rounce ed orange brown slightly sandy brown sand partings. (Weath d grey silty slightly sandy CL ledium gravel of tabular us lithorelicts. (Weathered pale grey green SILTSTON long) (Weathered Retford Me	AY
Plan .						Remarks Excavation remained dry an	d stable	
						Excavation remained dry an Relic land drain (infilled with	soil) encountered at 0.6m d	lepth
		•				Scale (approx)	Logged By	Figure No.
						1:50	M Lane	19017.TP05

travis baker	Travis Ba	ker (Geo-Environr	menta	al Ltd	Site Eakring Road, Bilsthorpe		Trial Pit Number TP06
Machine: J		Dimens	ions	Ground	Level (mOD)	Client Keepmoat Homes		Job Number 19017
			n (Handheld GPS) rfer to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environ	mental	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Market
0.10-0.20 0.80-0.90 1.20	D HSV 127.33kPa		130, 112, 140/Av. 127.33		(0.35) (0.75) 1.10 (0.65) 1.75 (0.80) (2.77)	rounded quartzite. TOPSC Pale brown (dense) silty si grain SAND with occasulo (Weathered Chester Forn Very stiff pale grey green a gravelly CLAY. Gravel is fi sandstone and siltstone. (Red brown and grey greer SAND. Gravel is fine to co (Weathered Chester Forn	lightly clayey fine and mediunal orange brown mottling. nation) and red brown silty slightly ne and medium tabular Weathered Chester Format (dense) slightly gravelly silesse rounded quartitie.	ion)
Plan .						Remarks		
			· · · · · · · · · · · · · · · · · · ·			Excavation remained dry an	d stable	
						Scale (approx)	Logged By	Figure No.
						1:50	M Lane	19017.TP06

travis baker	Travis Ba	ker C	Geo-Enviro	nment	al Ltd	Site Eakring Road, Bilsthorpe		Trial Pit Number TP07	
Machine : J		Dimensio	ons	Ground	Level (mOD)	Client Keepmoat Homes		Job Number 19017	
			(Handheld GPS) er to plan	Dates 29	9/07/2019	Engineer Travis Baker Geo-Environ	mental	Sheet 1/1	1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate	
0.20-0.30 1.20-1.30 1.80-1.90	B D				(0.30) (0.30) (0.30) (0.60) (1.00) (1.00) (1.00) (1.00) (1.00)	Stiff pale brown and pale of CLAY. Gravel is fine to coa (Weathered Retford Memb Stiff pale grey green silty soccasional brown mottling	rn sandy slightly gravelly clay gravel is fine to coarse rounder grey green silty slightly gravell arse rounded quartzite. John Strate of the strategy of the	y	
		•		•		Excavation remained dry an	d stable		
		•		•					
		•							
						Scale (approx)	Logged By I	Figure No. 19017.TP07	

travis baker	Travis Ba	ker (Geo-Environ	menta	al Ltd	Site Eakring Road, Bilsthorpe		Nu	ial Pit umber 'P08
Machine : Jo		Dimens	ions	Ground	Level (mOD)	Client Keepmoat Homes			ob umber 19017
			n (Handheld GPS) fer to plan	Dates 29	0/07/2019	Engineer Travis Baker Geo-Environ	mental	Sh	1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leg	Water
1.00 1.40-1.50 1.50-1.70	HSV DB		128, 130, 140		(0.30) (0.30) (0.30) (0.30) (0.30) (0.30) (0.30) (0.30) (0.30) (1.50) (1.50)	Pale brown (medium dens SAND. Gravel is fine to co (Weathered Chester Form Pale brown (medium dens occasional sandy clay poc Formation) Stiff red brown mottled gre Gravel is fine to coarse ro Chester Formation) Brown and red brown (der	orn sandy slightly gravelly clay cravel is fine to coarse rounded ele) very clayey sightly gravelly care rounded quartzite. nation) e) very clayey SAND with ket. (Weathered Chester ey sandy slightly gravelly CLA' unded quartzite. (Weathered nse) SAND AND GRAVEL. Grad quartzite and occasional e. (Weathered Chester	Y.	
Plan .						Remarks	d atable		
						Excavation remained dry an	u รเสบเย		
					· ·	Scale (approx) 1:50	Logged By I	Figure No.	

travis baker	Travis Ba	ker (Geo-Env	/ironm	nenta	al Ltd	Site Eakring Road, Bilsthorpe			Trial Pi Numbe SA1	er
Excavation Trial Pit	Method	Dimensi	ons		Ground	Level (mOD	Client Keepmoat Homes			Job Number 19017	
			n (Handheld GPS er to plan)	Dates 19/08/2019 Engineer Travis Baker Geo-Environmental Level Depth		mental		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness) D	escription	L	_egend	Water
Plan						2.50	Red brown locally white gr with rare clayey sand pook rounded quartzite with son	gravelly sand with roots and rounded quartzite. TOPSOII ravelly medium grained SAN (ets. Gravel is fine to coarse ne cobbles.	[/		
							Trial pit side wall collapse du Trial pit remained dry	uring soakaway test 1			
						_					
		•									
							Scale (approx)	Logged By	Figure	No. 17.SA1	

travis baker	Travis Ba	ker (Geo-En	vironm	nenta	al Ltd	Site Eakring Road, Bilsthorpe		ı	Trial Pit Number SA1A
Excavation Trial Pit	Method	Dimens	ions		Ground	Level (mOD)	Client Keepmoat Homes			Job Number 19017
			n (Handheld GP: fer to plan	S)	Dates 21/08/2019 Engineer Travis Baker Geo-Environmental Level Depth		mental	\$	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness	D	escription	Le	Mater Page
Plan						(0.40)	Light brown clayey very gr Firm light grey very sandy pockets. Gravel is fine to compose the same sand pockets. Gravel is fine to compose the same sand pockets. Gravel is fine to compose the same sand pockets.	clayey gravelly sand. Gravel artzite. TOPSOIL avelly sand. SUBSOIL. gravelly CLAY with some sationarse rounded quartzite. sandy slightly silty very grakets. Gravel is fine to coarse very gravelly SAND with rare	velly	
		-					Trial pit remained dry and st	able.		
		٠				. :	Scale (approx) 1:50	Logged By	Figure N	lo. 7.SA1A

travis baker	Travis Ba	aker (Geo-Enviro	nmenta	al Ltd	Site Eakring Road, Bilsthorpe		Trial Pit Number SA2
Excavatio Trial Pit	n Method	Dimens	ions	Ground	Level (mOD)	Client Keepmoat Homes		Job Number 19017
			n (Handheld GPS) fer to plan	Dates 19	9/08/2019	Engineer Travis Baker Geo-Environ	mental	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Vareer
					(0.50)	Firm grey brown very sand pockets. Gravel is fine to compare to the compare to th	deck gravelly slightly clayey sa quartzite with rare brick cobb dy slightly gravelly CLAY. Y gravelly CLAY with some sa coasre rounded quartzite. Town slightly clayey gravelly arse rounded quartizite with	and
Plan .					•	Remarks Trial pit remained dry and st	able.	
						Scale (approx) 1:50	Logged By	Figure No. 19017.SA2

travis baker	Travis Ba	ıker (Geo-Envii	ronme	enta	al Ltd	Site Eakring Road, Bilsthorpe			Trial Pi Numbe SA3	er
Excavation Trial Pit	Method	Dimensi	ons	G	Fround I	_evel (mOD)	Client Keepmoat Homes			Job Numbe 19017	
			n (Handheld GPS) fer to plan	D	Dates 19/	08/2019	Engineer Travis Baker Geo-Environi	mental		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ds (Level (mOD)	Depth (m) (Thickness)	D	escription	L	.egend	Water
Plan						(0.40)	Firm and stiff grey brown v is fine to coarse rounded o	avelly slightly clayey sand. unded quartzite. TOPSOIL ery sandy gravelly CLAY. Gi uartzite. Evelly SAND with grey sand oarse rounded quartzite.	::		
							Trial pit remained dry and sta	able			
						.	Scale (approx)	Logged By	Figure I	No. 17.SA3	
							1.50	LIIG	1901	i i .OAO	

travis baker	Travis Ba	ıker (Geo-En	/ironm	nenta	al Ltd	Site Eakring Road, Bilsthorpe		Nun	l Pit nber A4
Excavation Trial Pit	Method	Dimensi	ons		Ground	Level (mOD	Client Keepmoat Homes			n ber 017
			n (Handheld GPS fer to plan)	Dates 19	/08/2019	Engineer Travis Baker Geo-Environ	mental	She	e et 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	ords	Level (mOD)	Depth (m) (Thickness) D	escription	Lege	Water
Plan						(0.40)	Firm light grey sandy silty pockets. Brown & red brown gravel sandy clay pockets. Very g	ravelly slightly clayey sand. unded quartzite. TOPSOIL gravelly CLAY with some sa ly slightly silty SAND with ra gravelly from 2m.	×. • • • • • • • • • • • • • • • • • • •	
							Trial pit remained dry and st	able.		
•	·	-	•							
							Scale (approx)	Logged By	Figure No. 19017.S	A4

travis baker	Travis Ba	aker C	Geo-Envir	onmenta	al Ltd	Site Eakring Road, Bilsthorpe			Trial Pit Number SA5
Excavation Trial Pit	Method	Dimension	ons	Ground	Level (mOD)	Client Keepmoat Homes			Job Number 19017
			(Handheld GPS) er to plan	Dates 19	9/08/2019	Engineer Travis Baker Geo-Environ	mental	:	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	s Level (mOD)	Depth (m) (Thickness)	D	escription	L	Mater bnege
					(0.40) (0.20) (0.60) (0.40) 1.00 1.00 1.00 2.10	Red brown gravelly sand. Red brown and brown gra Gravel is fine to coarse ro Recovered as gravel of we SANDSTONE. Complete at 2.10m	unded coarse quartzite. velly slightly clayey SAND. unded quartzite.	::::	
Plan .		•		•		Remarks Refusal at 2.1m Trial pit remained dry and st	able.		
				• •		·			
					\$	Scale (approx) 1:50	Logged By	Figure N 1901	lo. 7.SA5

travis Ba	ker (Geo-Envir	onment	al Ltd	Site Eakring Road, Bilsthorpe		Trial Pit Number SA6
Excavation Method Trial Pit	Dimensi	ons	Ground	Level (mOD)	Client Keepmoat Homes		Job Number 19017
		n (Handheld GPS) er to plan	Dates 19	9/08/2019	Engineer Travis Baker Geo-Environi	mental	Sheet 1/1
Depth (m) Sample / Tests	Water Depth (m)	Field Record	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Vater
Plan				(0.30) (0.70) (0.50) (0.50) (0.50) (0.60) (0.60) (0.60)	Pale grey brown gravelly s clay pockets. Stiff pale grey with orange Very stiff red brown sandy lithorelicts	avelly clayey sand. Gravel is e. TOPSOIL. Ightly silty SAND with rare s mottling sandy CLAY. gravelly CLAY with sandstor y clayey SAND with sandstor	ne
					Trial pit remained dry and sta	able.	
·							
					Scale (approx)	Logged By	Figure No. 19017.SA6

Laboratory Geotechnical Results

LABORATORY REPORT FOR INDEX PROPERTY AND CHEMICAL TESTING

					LAD	OKA	UKI	KEPC								MICAL TESTING
Contrac	t:	Eakring	Road, Bilst	horpe.					Custom				-Environ	mental Li	mited,	
		1259G							Trinity Point,							
											New Ro	ad,				Ltd.
											Halesow	/en,				Devonshire House, Ettingshall Road,
Job No:	_		L/9623		Page No)	1 (of 1			West Mi					Wolverhampton. WV2 2JT
Date Re			30.07	19	Date Iss			8.19			B63 3H					Phone 01902 459558, Fax 01902 459085, Email lab@gipuk.com
	IPLE DET	All S	TEST			CLASSIF				I		/ICAL		% PAS	SSING	
0,		, _ 0	DATE			ex Prope		Ī			0			BSS		SAMPLE DESCRIPTION COMMENTS
SAMPLE	DEPTH			W	WL	WP	lР	PD	WC	Soluble	pН	*L.O.I.	*Total	SIZ	ZE	
		TYPE						(Gas Jar)		SO ₄			SO_4	2.00	0.425	
No.	m			%	%	%	%	Mg/m³	%	g/L	Value	%	%	mm	mm	
Deac	0710	В	00.00.10	24	36	01	15								99	Soft alightly ailty grov CLAV
D306	0.7-1.0	В	02.08.19	24	36	21	15								99	Soft slightly silty grey CLAY.
					 											-
TP01	1.3-1.5	В	02.08.19	15	33	16	17								81	Soft to firm sandy pale brown red
																CLAY.
TP03	0.9-1.1	В	02.08.19	17	26	17	9								97	Soft sandy grey brown clayey SILT.
TP05	0.9-1.1	В	02.08.19	23	49	23	26								99	Firm silty grey CLAY.
11 00	0.5-1.1		02.00.13	20	+	20	20								- 55	Timi sity giey ozar.
					†											
TP05	1.4-1.7	В	02.08.19	23	40	22	18								99	Firm to stiff brown CLAY.
TDOT	1010	_	00.00.40	0.4		0.4	40									0.6.76.84.4
TP07	1.2-1.3	В	02.08.19	24	39	21	18								99	Soft silty light grey CLAY.
					1											-
					 											-
																1
	ļ				1	ļ										⊣
	 				1	-										-
	-				1											-
 	 				+	 				 	 					┥
	t				<u> </u>	t										1
	Sample typ	е	Test	abbreviati	ions				Te	est method	ls - Unless	otherwise	stated.			
	Disturbed		W	Moisture				Part 2:1990								
В	Bulk distu		WL	Liquid lin		WL		Part 2:1990		Sol SO ₄		':Part 3:19				lac-MRA (>\
U	Undisturb		We Ie	Plastic lir		Wp Ip		Part 2:1990		pH Value		':Part 3:19				
S W	SPT split Ground w	-	PD	Index pro		PD		Part 2:1990 Part 3:1990		Total SO ₄	I signatory:	':Part 3:19	JU.U.S			UKAS TESTING
T	Tub	401		Loss on i	-	L.O.I		Part 3:1990		, tpproved	. Signatory	-			,	1897
			WC	Water Co	-	I		O 17892-1						0	5	Tests marked * are not UKAS accredited.
	Opir	nions and i	nterpretations	s are outs	ide the sco	pe of UKA	S accredit	ation		1				1. 1	1	The reported results relate only to samples received.
This	test report	shall not l	be reproduce	d except i	n full witho	ut written a	pproval by	the labora	atory.	Paul Sma	art, Labora	tory Manag	ger			# = Sample mass smaller than BS1377 requirements.

GROUND INVESTIGATION & PILING LIMITED TEST REPORT FOR PARTICLE SIZE DISTRIBUTION

Job No:- L/9623 Site:- Eakring Road, Bilsthorpe.

Received:- 31.07.19 Customer:- Travis Baker Geo-Environmental Ltd,

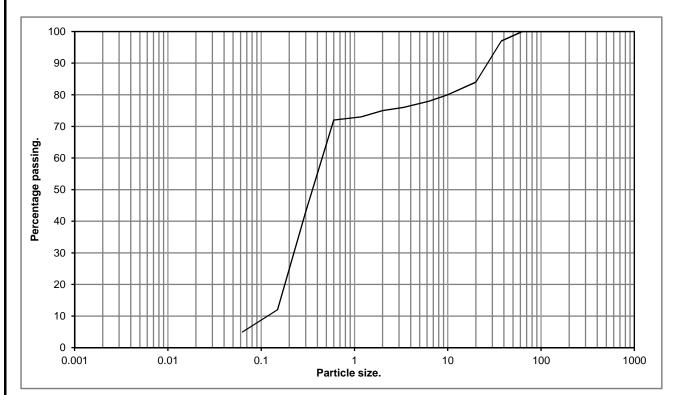
Tested:- 02.08.19 Trinity Point, New Road,

Report:- 08.08.19 Halesowen, West Midlands, B63 3HY.

TEST METHODS:-Particle Size Distribution:-BS 1377: Part 2: 1990

Clause 9.2 & 9.3

Sedimentation:-BS 1377: Part 2: 1990 Clause 9.4 Sample Description: Brown slightly silty gravelly SAND.


TP:- 08

Depth:- 1.5-1.7m

Page 1 of 1
TEST METHODS:Sample Preparation:
BS1377:Part1:2016:
Clause 8.3.4, 8.3.5, 8.4.5

Authorized by P.R.Smart Laboratory Manager

	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
CLAY		SILT			SAND			GRAVEL	COBBLES	BOULDERS	

Sieve	Size %	Sieve Size	%	
mr	n Passing	 mm	Passing	
20	0 100	3.35	76	
15	0 100	2	75	
12	5 100	1.18	73	
90	100	0.6	72	
75	5 100	0.3	43	
63	3 100	0.15	12	
37	.5 97	0.063	5	
20	84			
10	08 (
6.	3 78			

% Clay & Silt 5
% Sand 70
% Gravel 25
% Cobbles 0

1897

Sample mass < BS1377 requirements

The reported results relate only to samples received

Laboratory Chemical Test Results and Summary Table

EAKRING ROAD, BILSTHORPE

Appendix 7 – Chemical Summary Table

Substance	Target Value (mg/kg)	Travis Baker, All Materials (2019)						
		No. of Samples	Result - Range (mg/kg)	No. Samples Above Guidance				
Mercury	1.2 a	21	<1.0	0				
Selenium	250 a	21	<3.0	0				
Arsenic	37 a	21	3 - 24	0				
Nickel	180 a	21	6 - 27	0				
Cadmium	11 a	21	<1.0	0				
Boron (water-soluble)	290 a	21	<1.0	0				
Chromium	910 a	21	7 - 26	0				
Copper	2,400 a	21	10 - 71	0				
Lead	200 b	21	1 - 70	0				
Zinc	3,700 a	21	11 - 91	0				
Acenaphthene	210 * a	9	<0.1 - 0.8	0				
Acenaphthylene	170 a	9	<0.1 - 0.4	0				
Anthracene	2,400 a	9	<0.1 - 3	0				
Benzo(a)anthracene	7.2 a	9	<0.1 - 7.2	0				
Benzo(a)pyrene	2.2 ª	9	<0.1 - 7.6	2 TP03 0.1-0.2 TP07 0.2-0.3				
Benzo(b)fluoranthene	2.6 ª	9	<0.1 - 6.2	2 TP03 0.1-0.2 TP07 0.2-0.3				
Benzo(k)fluoranthene	77 a	9	<0.1 - 6.4	0				
Benzo(ghi)perylene	320 a	9	<0.1 - 3.8	0				
Chrysene	15 a	9	<0.1 - 7.4	0				
Dibenzo(ah)anthracene	0.24 ^a	9	<0.1 - 1.6	2 TP03 0.1-0.2 TP07 0.2-0.3				
Fluoranthene	280 a	9	<0.1 - 16	0				
Fluorene	170 a	9	<0.1 - 0.8	0				
Indeno(123-cd)pyrene	27 a	9	<0.1 - 3.5	0				
Naphthalene	2.3 a	9	<0.1 - 0.2	0				
Phenanthrene	95 a	9	<0.1 - 8.3	0				
Pyrene	620 a	9	<0.1 - 15	0				
DDT	2.7#	3	<0.01	0				
DDD	3.2#	3	<0.01	0				

<u>Notes</u>

^a CIEH/LQM - Suitable for Use Level (S4UL) published by the Chartered Institute of Environmental Health (CIEH) and Land Quality Management (LQM) dated January 2015. Based on 1% SOM, where appropriate.

^b C4SL - Category 4 Screening Levels published by DEFRA in 2014

^c EA CLEA - Soil Guidance Value (SGV) published by the EA calculated using Contaminated Land Exposure Assessment (CLEA) model (version 1.06)

- The CLEA model (v1.071) has been used to provide initial assessment criteria for DDD and DDT based on a standard clay soil with a conservative soil organic matter (SOM) content of 1% for a residential land use with gardens ('residential with produce').

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 837692-1

Date of Report: 14-Aug-2019

Customer: Travis Baker Geo-Environmental Ltd.

Trinity Point New Road Halesowen West Midlands B63 3HY

Customer Contact: Ms Lisa Glover

Customer Job Reference: 19017 Customer Purchase Order: 1260G

Customer Site Reference: Eakring Road, Bilsthorpe

Date Job Received at Concept: 31-Jul-2019
Date Analysis Started: 02-Aug-2019
Date Analysis Completed: 14-Aug-2019

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Customers are responsible for information provided where, if incorrect, it could affect the validity of the results.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs

All results have been reviewed in accordance with QMSection 15 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by : Toni Morris Customer Service Advisor Issued by: Toni Morris

Customer Service Advisor Mom

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

MCERTS Preparation

			Conce	ot Reference	837692 002	837692 003	837692 004	837692 006	837692 008
		Custor	ner Sampl	le Reference	TP01	TP01	TP02	TP03	TP03
			В	ottom Depth	0.8	1.5	0.6	0.2	2.0
				Top Depth	0.7	1.4	0.5	0.1	1.9
			D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Sandy Soil	Sandy Soil	Sandy Soil	Topsoil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units					
Moisture @105C	T162	AR	0.1	%	7.9	14	8.8	13	10
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

MCERTS Preparation

			Conc	ept Reference	837692 009	837692 010	837692 013	837692 014	837692 016
		Custon	ner Sam	ple Reference	TP05	TP05	TP06	TP07	TP08
				Bottom Depth	0.3	0.6	0.9	0.3	0.2
				Top Depth	0.2	0.5	0.8	0.2	0.1
				Date Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Clay	Sandy Soil	Sandy Soil	Clay	Topsoil
Determinand	Method	Test Sample	LOD	Units	WE S	NY STREET			
Moisture @105C	T162	AR	0.1	%	16	6.7	14	15	8.6
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe **Customer Reference:** 19017

Soil Analysed as Soil

MCERTS Preparation

				100					
			Concep	ot Reference	837692 017	837692 018	837692 019	837692 022	837692 024
		Custon	ner Sampl	e Reference	TP08	DS06	DS06	DS03	DS01
			В	ottom Depth	1.5	0.1	0.3	0.2	0.1
				Top Depth	1.4	0.0	0.2	0.1	0.0
			Da	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
			l	Matrix Class	Sandy Soil	Topsoil	Topsoil	Topsoil	Topsoil
Determinand	Method	Test Sample	LOD	Units					
Moisture @105C	T162	AR	0.1	%	10	19	14	16	13
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

MCERTS Preparation

MICENTO FTEPATALION									
			Concep	t Reference	837692 025	837692 027	837692 028	837692 031	837692 033
		Custon	ner Sampl	e Reference	DS01	DS02	DS02	DS04	DS05
			В	ottom Depth	0.55	0.1	0.5	0.6	0.1
				Top Depth	0.45	0.0	0.4	0.5	0.0
			Da	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Sandy Soil	Topsoil	Sandy Soil	Clay	Topsoil
Determinand	Method	Test Sample	LOD	Units					
Moisture @105C	T162	AR	0.1	%	9.1	12	5.2	12	12
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

MCERTS Preparation

			Concep	t Reference	837692 034								
	Customer Sample Reference												
	0.4												
	`0.3												
	29-JUL-2019												
			ı	Matrix Class	Sandy Soil								
Determinand	Method	Test Sample	LOD	Units									
Moisture @105C	T162	AR	0.1	%	7.0								
Retained on 10mm sieve	T2	M40	0.1	%	<0.1								

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

% Stones

		·	Conc	ept Reference	837692 002	837692 003	837692 004	837692 006	837692 008
		Custon	ner Sam	ple Reference	TP01	TP01	TP02	TP03	TP03
				Bottom Depth	0.8	1.5	0.6	0.2	2.0
				Top Depth	0.7	1.4	0.5	0.1	1.9
				Date Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Sandy Soil	Sandy Soil	Sandy Soil	Topsoil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units		NY THE			
Retained on 20mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1
Retained on 2mm	T2	A40	0.1	%	12.5	19.7	25.7	39.0	8.4
Retained on 50mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

% Stones

	·		Conce	ot Reference	837692 009	837692 010	837692 013	837692 014	837692 016
		Custon	ner Sampl	le Reference	TP05	TP05	TP06	TP07	TP08
			В	ottom Depth	0.3	0.6	0.9	0.3	0.2
				Top Depth	0.2	0.5	0.8	0.2	0.1
			D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Clay	Sandy Soil	Sandy Soil	Clay	Topsoil
Determinand	Method	Test Sample	LOD	Units					
Retained on 20mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1
Retained on 2mm	T2	A40	0.1	%	36.5	51.0	3.6	52.9	12.2
Retained on 50mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

% Stones

			Conce	pt Reference	837692 017	837692 018	837692 019	837692 022	837692 024
		Custor	ner Samp	le Reference	TP08	DS06	DS06	DS03	DS01
			В	ottom Depth	1.5	0.1	0.3	0.2	0.1
	Top Depti						0.2	0.1	0.0
	D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019		
				Matrix Class	Sandy Soil	Topsoil	Topsoil	Topsoil	Topsoil
Determinand	Method	Test Sample	LOD	Units					
Retained on 20mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1
Retained on 2mm	T2	A40	0.1	%	13.2	12.3	16.4	38.3	16.2
Retained on 50mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

% Stones

			Cond	cept Reference	837692 025	837692 027	837692 028	837692 031	837692 033
		Custon	ner San	nple Reference	DS01	DS02	DS02	DS04	DS05
				Bottom Depth	0.55	0.1	0.5	0.6	0.1
				Top Depth	0.45	0.0	0.4	0.5	0.0
				Date Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Sandy Soil	Topsoil	Sandy Soil	Clay	Topsoil
Determinand	Method	Test Sample	LOD	Units					
Retained on 20mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1
Retained on 2mm	T2	A40	0.1	%	20.6	23.3	33.1	9.6	14.6
Retained on 50mm	T2	AR	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

% Stones

			Concer	t Reference	837692 034		
	•	Custor	ner Sampl	e Reference	DS05		
			В	ottom Depth	0.4		
	Top Depth						
			D	ate Sampled	29-JUL-2019		
			!	Matrix Class	Sandy Soil		
		Test					
Determinand	Method	Sample	LOD	Units			
Retained on 20mm	T2	AR	0.1	%	<0.1		
Retained on 2mm	T2	A40	0.1	%	15.7		
Potoined on F0mm	To	۸۵	0.4	0/	.0.4		

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

Travis Baker Greenfield Suite

			Conce	ot Reference	837692 002	837692 003	837692 004	837692 006	837692 008
		Custon	ner Sampl	le Reference	TP01	TP01	TP02	TP03	TP03
			В	ottom Depth	0.8	1.5	0.6	0.2	2.0
				Top Depth	0.7	1.4	0.5	0.1	1.9
			D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Sandy Soil	Sandy Soil	Sandy Soil	Topsoil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units					
Arsenic	T6	M40	2	mg/kg	3	7	6	9	5
Boron (water-soluble)	T6	A40	1	mg/kg	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	10	24	17	16	7
Copper	T6	M40	1	mg/kg	13	30	25	27	14
Lead	T6	M40	1	mg/kg	10	6	13	37	1
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	10	21	16	14	7
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3
Zinc	T6	M40	1	mg/kg	29	36	44	53	11
рН	T7	A40			7.8	7.5	7.5	7.3	7.8
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	<0.05	<0.05	<0.05	<0.05	<0.05

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Soil Ar	nalysed as So	il							
Travis Baker Greenfield Suite									
	70.15	14 1X	Conc	ept Reference	837692 009	837692 010	837692 013	837692 014	837692 016
	4.034	Custon	ner Sam	ple Reference	TP05	TP05	TP06	TP07	TP08
	15000	STATE OF	Time Sy	Bottom Depth	0.3	0.6	0.9	0.3	0.2
	100	170		Top Depth	0.2	0.5	0.8	0.2	0.1
				Date Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Clay	Sandy Soil	Sandy Soil	Clay	Topsoil
Determinand	Method	Test Sample	LOD	Units			EST:		5
Arsenic	T6	M40	2	mg/kg	17	4	24	22	14
Boron (water-soluble)	T6	A40	1	mg/kg	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	23	8	20	23	21
Copper	T6	M40	1	mg/kg	48	10	71	56	39
Lead	T6	M40	1	mg/kg	56	6	17	70	47
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Nickel	Т6	M40	1	mg/kg	23	8	27	24	19
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3
Zinc	T6	M40	1	mg/kg	81	21	46	91	75
рН	T7	A40			7.3	7.5	7.5	7.5	7.2
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	<0.05	<0.05	<0.05	<0.05	<0.05

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

Travis Baker Greenfield Suite

			Conce	ot Reference	837692 017	837692 018	837692 019	837692 022	837692 024
		Custon	ner Samp	le Reference	TP08	DS06	DS06	DS03	DS01
			В	ottom Depth	1.5	0.1	0.3	0.2	0.1
				Top Depth	1.4	0.0	0.2	0.1	0.0
			D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Sandy Soil	Topsoil	Topsoil	Topsoil	Topsoil
Determinand	Method	Test Sample	LOD	Units					
Arsenic	T6	M40	2	mg/kg	11	16	14	19	7
Boron (water-soluble)	T6	A40	1	mg/kg	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	8	23	21	23	12
Copper	T6	M40	1	mg/kg	40	47	40	54	24
Lead	T6	M40	1	mg/kg	4	57	50	63	33
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	16	22	20	24	10
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3
Zinc	T6	M40	1	mg/kg	21	88	70	85	49
рН	T7	A40			7.8	7.0	7.7	7.4	7.3
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	<0.05	<0.05	<0.05	<0.05	<0.05

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Soil A	nalysed as So	il							
Travis Baker Greenfield Suite									
	70.15	14 W	Conc	ept Reference	837692 025	837692 027	837692 028	837692 031	837692 033
		Custon	ner Sam	ple Reference	DS01	DS02	DS02	DS04	DS05
	15000	9347949	Time Sy	Bottom Depth	0.55	0.1	0.5	0.6	0.1
	0	11		Top Depth	0.45	0.0	0.4	0.5	0.0
				Date Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Sandy Soil	Topsoil	Sandy Soil	Clay	Topsoil
Determinand	Method	Test Sample	LOD	Units			EXT.		5
Arsenic	T6	M40	2	mg/kg	5	7	3	15	10
Boron (water-soluble)	T6	A40	1	mg/kg	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	22	11	8	26	14
Copper	T6	M40	1	mg/kg	70	17	10	54	26
Lead	T6	M40	1	mg/kg	6	28	5	32	46
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	22	8	6	26	13
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3
Zinc	T6	M40	1	mg/kg	43	45	19	71	77
рН	T7	A40			7.4	7.1	7.9	7.6	7.2
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	<0.05	<0.05	<0.05	<0.05	<0.05

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Analysed as Soil

Travis Baker Greenfield Suite

	ot Reference	837692 034									
		Custon	ner Samp	le Reference	DS05						
			В	ottom Depth	0.4						
	Top Depth										
Date Sampled											
Matrix Class											
Determinand	Method	Test Sample	LOD	Units							
Arsenic	T6	M40	2	mg/kg	8						
Boron (water-soluble)	T6	A40	1	mg/kg	<1						
Cadmium	T6	M40	1	mg/kg	<1						
Chromium	T6	M40	1	mg/kg	12						
Copper	T6	M40	1	mg/kg	21						
Lead	T6	M40	1	mg/kg	14						
Mercury	T6	M40	1	mg/kg	<1						
Nickel	T6	M40	1	mg/kg	14						
Selenium	T6	M40	3	mg/kg	<3						
Zinc	T6	M40	1	mg/kg	35						
рН	T7	A40			7.5						
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	< 0.05						

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Soil Analysed	l as Soil								
BRE SD1									
		150.0	Conce	ot Reference	837692 005	837692 008	837692 011	837692 015	837692 020
		Custor	ner Samp	le Reference	TP02	TP03	TP05	TP07	DS06
		No Mark	В	ottom Depth	1.7	2.0	1.0	1.9	1.2
9		WES	86.44	Top Depth	1.6	1.9	0.9	1.8	1.1
		75.00	D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class		Sandy Soil	N. A. TA		
Determinand	Method	Test Sample	LOD	Units			171-35	CARL A	
рН	T7	A40			7.9	7.8	7.8	8.8	8.5
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	<0.05	<0.05	<0.05	<0.05	0.10
(Acid Soluble) SO4	T192	A40	0.02	%	<0.02	<0.02	0.04	<0.02	0.50
Sulphur (total)	T6	A40	0.01	%	<0.01	<0.01	0.01	<0.01	0.03
(Water soluble) Mg	T251	A40	1	mg/l	<1	<1	2	1	<1
(Water soluble) CI-	T710	A40	0.01	g/l	<0.01	<0.01	<0.01	<0.01	<0.01
(Water soluble) NO3	T710	A40	0.01	g/l	<0.01	<0.01	<0.01	<0.01	<0.01
(Water soluble) Ammonia expressed as NH4	T710	AR	0.01	g/l	<0.01	<0.01	<0.01	<0.01	<0.01

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

BRE SD1

			Conce	t Reference	837692 026	837692 032	837692 035
		Custor	ner Samp	e Reference	DS01	DS04	DS05
			В	ottom Depth	0.8	0.9	1.2
	0.7	0.8	1.1				
	29-JUL-2019	29-JUL-2019	29-JUL-2019				
Determinand	Method	Test Sample	LOD	Units			
pH	T7	A40			7.4	7.7	7.5
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	<0.05	<0.05	<0.05
(Acid Soluble) SO4	T192	A40	0.02	%	<0.02	<0.02	<0.02
Sulphur (total)	T6	A40	0.01	%	<0.01	<0.01	<0.01
(Water soluble) Mg	T251	A40	1	mg/l	<1	<1	<1
(Water soluble) CI-	T710	A40	0.01	g/l	<0.01	<0.01	<0.01
(Water soluble) NO3	T710	A40	0.01	g/l	<0.01	<0.01	<0.01
(Water soluble) Ammonia expressed as NH4	T710	AR	0.01	g/l	<0.01	<0.01	<0.01

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Soil		Analysed a	as Soil						
PAH USEPA16 MCERTS									
		- 24	Conce	ot Reference	837692 006	837692 009	837692 014	837692 016	837692 018
		Custon	ner Samp	le Reference	TP03	TP05	TP07	TP08	DS06
			В	ottom Depth	0.2	0.3	0.3	0.2	0.1
				Top Depth	0.1	0.2	0.2	0.1	0.0
			D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-2019
				Matrix Class	Topsoil	Clay	Clay	Topsoil	Topsoil
Determinand	Method	Test Sample	LOD	Units			1/1/2		
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	0.3	<0.1	0.4	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	0.8	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	0.3	<0.1	0.8	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	4.2	0.7	8.3	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	0.9	0.2	3.0	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	8.9	1.7	16	0.1	0.2
Pyrene	T207	M105	0.1	mg/kg	7.6	1.5	15	<0.1	0.2
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	3.7	0.7	7.2	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	4.1	0.8	7.4	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	2.8	0.5	6.2	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	3.4 ⁽⁶⁸⁾	0.6 ⁽⁶⁸⁾	6.4 ⁽⁶⁸⁾	<0.1 ⁽⁶⁸⁾	<0.1 ⁽⁶⁸⁾
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	3.6	0.7	7.6	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	1.7	0.3	3.5	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	0.5	<0.1	1.6	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	2.0	0.4	3.8	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	44	8.1	88	0.1	0.3

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

PAH USEPA16 MCERTS

			Conce	t Reference	837692 022	837692 024	837692 027	837692 03
		Custon	ner Sampl	e Reference	DS03	DS01	DS02	DS05
			В	ottom Depth	0.2	0.1	0.1	0.1
				Top Depth	0.1	0.0	0.0	0.0
			D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	29-JUL-20
				Matrix Class	Topsoil	Topsoil	Topsoil	Topsoil
Determinand	Method	Test Sample	LOD	Units				
Naphthalene	T207	M105	0.1	mg/kg	<0.1	0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	0.1	0.2	0.3
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	0.2	0.3
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.2
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1 ⁽⁶⁸⁾	<0.1 ⁽⁶⁸⁾	<0.1 ⁽⁶⁸⁾	0.1 ⁽⁶⁸⁾
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	0.2	0.3	1.5

Concept Reference: 837692

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

Organochlorine insecticides

	Concept Reference						837692 030	
	Customer Sample Reference							
	Bottom Depth							
	Top Depth							
			D	ate Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019	
		T1		1000				
Determinand	Method	Test Sample	LOD	Units				

Determinand	Method	Test Sample	LOD	Units			
Hexachlorocyclohexane (sum of alpha, beta and gamma)	T16	AR	0.01	mg/kg	0.01	0.01	<0.01
Hexachlorobenzene	T1	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Heptachlor	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Aldrin	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Heptachlor epoxide	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Chlordane	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Endosulphan	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
DDE	T16	AR	0.01	mg/kg	0.01	0.01	<0.01
Dieldrin	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Endrin	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
DDD	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
DDT	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01

Project Site: Eakring Road, Bilsthorpe

Customer Reference: 19017

Soil Analysed as Soil

Organophosphorous insecticides

Concept Reference	837692 001	837692 012	837692 030
Customer Sample Reference	TP01	TP06	DS04
Bottom Depth	0.2	0.2	0.1
Top Depth	0.1	0.1	0.0
Date Sampled	29-JUL-2019	29-JUL-2019	29-JUL-2019

Determinand	Method	Test Sample	LOD	Units			
Dichlorvos	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Mevinphos	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Dimethoate	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Diazinon	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Pirimiphos methyl	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Malathion	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Fenitrothion	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Parathion	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
Azinphos methyl	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01

Index to symbols used in 837692-1

Value	Description
AR	As Received
A40	Assisted dried < 40C
M40	Analysis conducted on sample assisted dried at no more than 40C. Results are reported on a dry weight basis.
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
68	Outside scope of UKAS accreditation
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

PAH's were analysed at our Braintree Laboratory.

Method Index

Value	Description
T6	ICP/OES
T7	Probe
T207	GC/MS (MCERTS)
T242	2:1 Extraction/ICP/OES (TRL 447 T1)
T2	Grav
T16	GC/MS
T251	2:1 Extraction/ICP/OES
T1	GC/MS (HR)
T710	2:1 Extraction / Discrete Analyser
T162	Grav (1 Dec) (105 C)
T192	HCI Extraction/ICP/OES (TRL 447 T2)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Naphthalene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Acenaphthylene	T207	M105	0.1	mg/kg	U	006,009,014,016,018,022,024,027,033
Acenaphthene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Fluorene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Phenanthrene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Anthracene	T207	M105	0.1	mg/kg	U	006,009,014,016,018,022,024,027,033

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Fluoranthene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Pyrene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Chrysene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	М	006,009,014,016,018,022,024,027,033
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	M	006,009,014,016,018,022,024,027,033
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	M	006,009,014,016,018,022,024,027,033
Dibenzo(ah)Anthracene Benzo(ghi)Perylene	T207 T207	M105 M105	0.1	mg/kg	M M	006,009,014,016,018,022,024,027,033 006,009,014,016,018,022,024,027,033
PAH(total)	T207	M105	0.1	mg/kg mg/kg	U	006,009,014,016,018,022,024,027,033
Arsenic	T6	M40	2	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033
Boron (water-soluble)	T6	A40	1	mg/kg	N	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Cadmium	T6	M40	1	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Chromium	Т6	M40	1	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Copper	Т6	M40	1	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033
Lead	Т6	M40	1	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Mercury	Т6	M40	1	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Nickel	Т6	M40	1	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Selenium	Т6	M40	3	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Zinc	Т6	M40	1	mg/kg	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
рН	T7	A40			М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	М	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Retained on 20mm	T2	AR	0.1	%	N	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Retained on 2mm	T2	A40	0.1	%	N	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Retained on 50mm	T2	AR	0.1	%	N	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
pH	T7	A40	0.05		U	005,008,011,015,020,026,032,035
(Water Soluble) SO4 expressed as SO4	T242	A40	0.05	g/l	U	005,008,011,015,020,026,032,035
(Acid Soluble) SO4 Sulphur (total)	T192 T6	A40 A40	0.02	%	U	005,008,011,015,020,026,032,035 005,008,011,015,020,026,032,035
(Water soluble) Mg	T251	A40	1	mg/l	N	005,008,011,015,020,025,032,035
(Water soluble) CI-	T710	A40	0.01	g/l	N	005,008,011,015,020,026,032,035
(Water soluble) NO3	T710	A40	0.01	g/l	N	005,008,011,015,020,026,032,035
(Water soluble) Ammonia expressed as NH4	T710	AR	0.01	g/I	N	005,008,011,015,020,026,032,035
Dichlorvos	T16	AR	0.01	mg/kg	U	001,012,030
Mevinphos	T16	AR	0.01	mg/kg	U	001,012,030
Dimethoate	T16	AR	0.01	mg/kg	U	001,012,030
Diazinon	T16	AR	0.01	mg/kg	U	001,012,030
Pirimiphos methyl	T16	AR	0.01	mg/kg	U	001,012,030
Malathion	T16	AR	0.01	mg/kg	U	001,012,030
Fenitrothion Parathion	T16	AR AR	0.01	mg/kg mg/kg	U	001,012,030 001,012,030
Azinphos methyl	T16	AR	0.01	mg/kg	U	001,012,030
Moisture @105C	T162	AR	0.1	% %	N	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Retained on 10mm sieve	T2	M40	0.1	%	N	002-004,006,008-010,013-014,016-019,022,024-025,027-028,031,033 -034
Hexachlorocyclohexane (sum of alpha, beta and gamma)	T16	AR	0.01	mg/kg	U	001,012,030
Hexachlorobenzene	T16	AR	0.01	mg/kg	U	001,012,030
Heptachlor Aldrin	T16 T16	AR AR	0.01	mg/kg mg/kg	U	001,012,030 001,012,030
Heptachlor epoxide	T16	AR	0.01	mg/kg mg/kg	U	001,012,030
Chlordane	T16	AR	0.01	mg/kg	U	001,012,030
Endosulphan	T16	AR	0.01	mg/kg	U	001,012,030
DDE	T16	AR	0.01	mg/kg	U	001,012,030
Dieldrin	T16	AR	0.01	mg/kg	U	001,012,030
Endrin	T16	AR	0.01	mg/kg	U	001,012,030
DDD	T16	AR	0.01	mg/kg	U	001,012,030
DDT	T16	AR	0.01	mg/kg	U	001,012,030

APPENDIX 8

TRL DCP Results and Estimated CBR values

Appendix 8 - TRL Summary Eakring Road, Bilsthorpe

	TRLDCP 1									
Blows	Depth (mm/bgl)	Total Blows	Depth of Penetration (mm)	mm/blow	CBR%					
2	100	2	100	50.0	0.68					
3	200	5	100	20.0	1.10					
5	300	10	100	10.0	1.42					
13	400	23	100	4.3	1.81					
16	500	39	100	2.6	2.05					
8	600	47	100	2.1	2.13					
10	700	57	100	1.8	2.22					
9	800	66	100	1.5	2.29					
8	900	74	100	1.4	2.34					
5	1000	79	100	1.3	2.37					

	TRLDCP 2								
Blows	Depth (mm/bgl)	Total Blows	Depth of Penetration (mm)	mm/blow	CBR%				
3	100	3	100	33.3	0.87				
6	200	9	100	11.1	1.37				
7	300	16	100	6.3	1.64				
13	400	29	100	3.4	1.91				
8	500	37	100	2.7	2.02				
3	600	40	100	2.5	2.06				
3	700	43	100	2.3	2.09				
4	800	47	100	2.1	2.13				
5	900	52	100	1.9	2.18				
6	1000	58	100	1.7	2.23				

	TRLDCP 3									
Blows	Depth (mm/bgl)	Total Blows	Depth of Penetration (mm)	mm/blow	CBR%					
2	100	2	100	50.0	0.68					
3	200	5	100	20.0	1.10					
6	300	11	100	9.1	1.47					
6	400	17	100	5.9	1.67					
9	500	26	100	3.8	1.86					
5	600	31	100	3.2	1.94					
4	700	35	100	2.9	2.00					
4	800	39	100	2.6	2.05					
5	900	44	100	2.3	2.10					
9	1000	53	100	1.9	2.19					

Appendix 8 - TRL Summary Eakring Road, Bilsthorpe

	TRLDCP 4									
Blows	Depth (mm/bgl)	Total Blows	Depth of Penetration (mm)	mm/blow	CBR%					
2	100	2	100	50.0	0.68					
3	200	5	100	20.0	1.10					
5	300	10	100	10.0	1.42					
7	400	17	100	5.9	1.67					
7	500	24	100	4.2	1.82					
7	600	31	100	3.2	1.94					
5	700	36	100	2.8	2.01					
7	800	43	100	2.3	2.09					
11	900	54	100	1.9	2.20					
17	1000	71	100	1.4	2.32					

	TRLDCP 5					
Blows	Depth (mm/bgl)	Total Blows	Depth of Penetration (mm)	mm/blow	CBR%	
2	100	2	100	50.0	0.68	
5	200	7	100	14.3	1.26	
3	300	10	100	10.0	1.42	
5	400	15	100	6.7	1.61	
5	500	20	100	5.0	1.74	
7	600	27	100	3.7	1.88	
7	700	34	100	2.9	1.98	
4	800	38	100	2.6	2.04	
3	900	41	100	2.4	2.07	
5	1000	46	100	2.2	2.12	

	TRLDCP 6					
Blows	Depth (mm/bgl)	Total Blows	Depth of Penetration (mm)	mm/blow	CBR%	
2	100	2	100	50.0	0.68	
4	200	6	100	16.7	1.19	
4	300	10	100	10.0	1.42	
7	400	17	100	5.9	1.67	
6	500	23	100	4.3	1.81	
4	600	27	100	3.7	1.88	
4	700	31	100	3.2	1.94	
4	800	35	100	2.9	2.00	
4	900	39	100	2.6	2.05	
4	1000	43	100	2.3	2.09	

APPENDIX 9

Gas and Groundwater Monitoring Results

Client Name: Keepmoat Homes

Pressure Trend: Rising

Weather: Sunny intervals

Site Name: Eakring Road, Bilsthorpe

Date of Sampling: 01/08/2019 Job Number: 19017

Borehole Reference	Borehole Flow	Methane	Carbon Dioxide	Oxygen	Balance	Sample Type	Borehole Pressure	Depth	(m bgl)
	(l/hr)	(% by volume)	(% by volume)	(% by volume)	(% by volume)		(mb)	Borehole	Water
DS1	0.0	0.0	3.9	15.7	80.4	Accumulated	-0.03	2.07	Dry
DS3	0.0	0.0	4.9	9.0	86.1	Accumulated	0.02	1.52	Dry
DS5	0.0	0.0	4.5	16.2	79.4	Accumulated	0.0	2.10	Dry
DS6	0.0	0.0	6.0	7.9	86.1	Accumulated	0.02	1.82	1.43
Atmospheric Pressure: 1011mb Instrument Type: GA5000				Notes:					

Sample Type: As indicated above

Operator: T Darby

Client Name: Keepmoat Homes

Date of Sampling: 09/08/2019 Job Number: 19017

Site Name: Eakring Road, Bilsthorpe

Borehole Reference	Borehole Flow	Methane	Carbon Dioxide	Oxygen	Balance	Sample Type	Borehole Pressure	Depth	(m bgl)
	(I/hr)	(% by volume)	(% by volume)	(% by volume)	(% by volume)		(mb)	Borehole	Water
DS1	0.0	0.0	5.2	14.9	79.9	Accumulated	-1.92	2.07	Dry
DS3	0.0	0.0	4.2	12.8	83.0	Accumulated	0.40	1.52	Dry
DS5	0.0	0.0	3.7	16.6	79.7	Accumulated	-0.03	2.10	Dry
DS6	0.0	0.0	4.3	15.5	80.2	Accumulated	0.31	1.82	1.36
	Notes:								

Atmospheric Pressure: 990mb	Instrument Type: GA5000	
Pressure Trend: Rising	Sample Type: As indicated above	
Weather: Sunny intervals	Operator: T Darby	

Client Name: Keepmoat Homes

Date of Sampling: 20/08/2019

Site Name: Eakring Road, Bilsthorpe

Job Number: 19017

Borehole Reference	Borehole Flow	Methane	Carbon Dioxide	Oxygen	Balance	Sample Type	Borehole Pressure		(m bgl)
	(l/hr)	(% by volume)	(% by volume)	(% by volume)	(% by volume)		(mb)	Borehole	Water
DS1	0.0	0.0	4.0	17.4	78.6	Accumulated	1.10	2.07	Dry
DS3	0.0	0.0	3.1	16.6	80.3	Accumulated	-0.27	1.52	Dry
DS5	0.0	0.0	2.2	19.1	78.7	Accumulated	-0.48	2.10	Dry
DS6	0.0	0.0	4.2	17.7	78.2	Accumulated	-0.53	1.82	1.38
Atmospheric Pressure: 1011mb			ı	nstrument Type:	GA5000		Note	es:	
Pressure Trend:			S	Sample Type: As indicated above					
Weather: Sunny intervals			(Operator: T Darby					

Client Name: Keepmoat Homes

Date of Sampling: 13/09/2019 Job Number: 19017

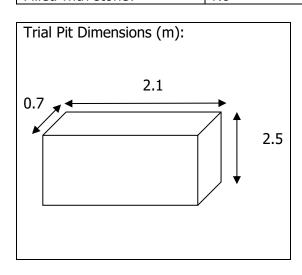
Site Name: Eakring Road, Bilsthorpe

Borehole Borehole Methane Carbon Oxygen Balance Sample Type Borehole Depth (m bgl) Reference Flow Dioxide Pressure (l/hr) (% by (% by (% by (% by (mb) Borehole Water volume) volume) volume) volume) 0.0 0.0 0.9 20.4 78.8 Accumulated -0.58 2.07 Dry DS1 0.0 0.0 2.1 18.1 79.0 Accumulated -1.15 1.52 Dry DS3 DS5 0.0 0.0 0.7 20.3 79.0 Accumulated -0.27 2.10 Dry DS6 1.82 Dry Notes: Atmospheric Pressure: 1028mb Instrument Type: GA5000

Atmospheric Pressure: 1028mb

Pressure Trend: --
Weather: Sunny

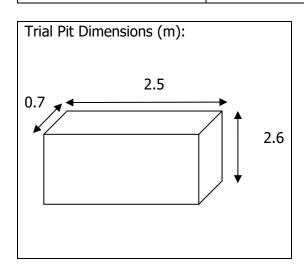
Instrument Type: GA5000


Sample Type: As indicated above

Operator: T Darby

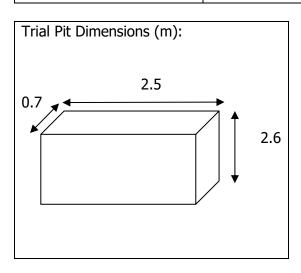
APPENDIX 10

Soakaway Test Results


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	19/08/19
Weather:	Cloudy with showers
Soakaway Reference:	SA1
Test Number at Location:	1
Groundwater Level at	1.52m
Start:	
Filled with stone?	No

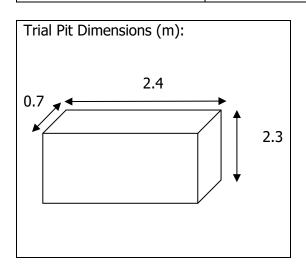
Time in mins	Water Level (m)
1	1.57
2	1.58
3	1.59
2 3 4 5	1.6
5	1.61
6	1.62
7	1.63
8	1.64
9	1.645
10	1.65
11	1.66
12	1.67
13	1.68
14	1.68
15	1.685
17	1.695
21	1.71
24	1.72
27	1.74
31	1.74
41	1.77
51	1.67
62	1.71

Water Level (m)
1.74
1.755
1.79
1.82
1.88
1.92
1.96
2.04


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	21/08/19
Weather:	
Soakaway Reference:	SA1A
Test Number at Location:	1
Groundwater Level at	1.8m
Start:	
Filled with stone?	No

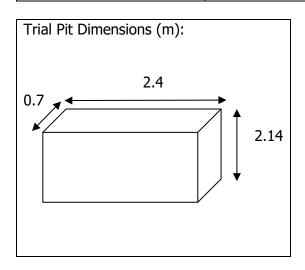
Time in mins	Water Level (m)
1	1.8
2	1.82
3	1.83
4	1.83
2 3 4 5 6	1.84
	1.85
7	1.855
8	1.86
9	1.86
10	1.87
11	1.88
12	1.885
13	1.89
15	1.91
17	1.92
19	1.92
21	1.92
31	1.94
36	1.96
38	1.96
67	2.01
86	2.06
123	2.07

Time in mins	Water Level (m)
148	2.09
170	2.11
218	2.15
264	2.19
305	2.22
329	2.25


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	22/08/19
Weather:	
Soakaway Reference:	SA1A
Test Number at Location:	2
Groundwater Level at	1.6m
Start:	
Filled with stone?	No

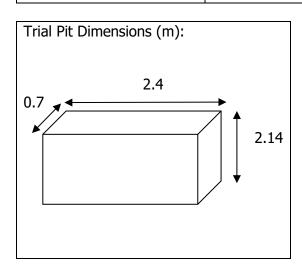
Time in mins	Water Level (m)
1	1.61
2	1.62
3 4	1.62
4	1.63
5	1.62
6	1.63
7	1.63
8	1.63
9	1.63
10	1.64
15	1.65
27	1.63
34	1.64
40	1.64
62	1.68
82	1.71
106	1.75
124	1.77
152	1.81
187	1.84
211	1.86
251	1.9
291	1.93

329 1.96	Time in mins	Water Level (m)
	329	1.96


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	19/08/19
Weather:	
Soakaway Reference:	SA2
Test Number at Location:	1
Groundwater Level at	1.48m
Start:	
Filled with stone?	No

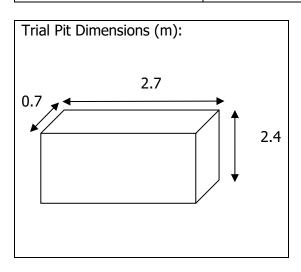
Time in mins	Water Level (m)
1	1.485
2	1.49
3	1.5
4	1.5
2 3 4 5 6 7	1.5
6	1.5
7	1.505
8	1.505
9	1.51
10	1.51
11	1.51
12	1.52
13	1.52
14	1.52
15	1.52
16	1.52
17	1.52
18	1.525
19	1.525
20	1.53
22	1.54
24	1.54
26	1.545

Time in mins	Water Level (m)
28	1.55
30	1.56
35	1.56
40	1.565
54	1.59
59	1.6
73	1.61
85	1.62
115	1.66
132	1.66
153	1.68
190	1.7
238	1.74
248	1.74
287	1.77
311	1.77


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	21/08/19
Weather:	
Soakaway Reference:	SA2
Test Number at Location:	2
Groundwater Level at	1.14
Start:	
Filled with stone?	No

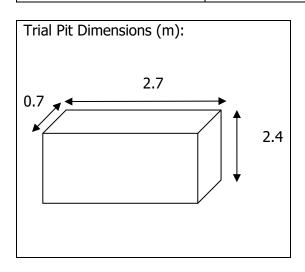
Time in mins	Water Level (m)
1	1.1
2	1.13
3	1.13
4	1.14
2 3 4 5 6 7	1.15
6	1.15
7	1.155
8	1.16
9	1.17
10	1.17
16	1.18
20	1.2
24	1.21
28	1.21
30	1.21
32	1.21
34	1.21
36	1.21
38	1.21
40	1.22
59	1.3
99	1.35
124	1.4

Time in mins	Water Level (m)
145	1.43
170	1.46
188	1.46
213	1.48
227	1.54
250	1.55
272	1.53
320	1.55
366	1.6
408	1.62
437	1.63


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	22/08/19
Weather:	
Soakaway Reference:	SA2
Test Number at Location:	3
Groundwater Level at	1.14m
Start:	
Filled with stone?	No

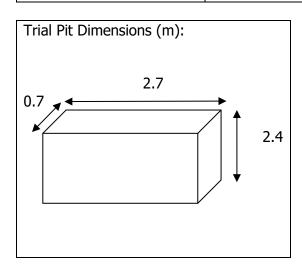
Time in mins	Water Level (m)
1	1.14
2	1.16
3	1.17
4	1.17
5	1.17
2 3 4 5 6	1.17
7	1.17
8	1.17
9	1.18
10	1.18
16	1.18
22	1.19
44	1.23
64	1.25
88	1.29
106	1.31
134	1.33
168	1.38
206	1.4
246	1.44
283	1.45

Time in mins	Water Level (m)


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	19/08/19
Weather:	
Soakaway Reference:	SA3
Test Number at Location:	1
Groundwater Level at	1.5
Start:	
Filled with stone?	No

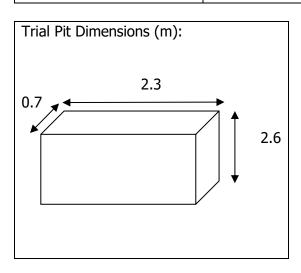
Time in mins	Water Level (m)
1	1.5
2	1.53
3	1.55
4	1.56
5	1.575
6	1.59
2 3 4 5 6 7	1.6
8	1.6
9	1.605
10	1.62
11	1.625
12	1.64
13	1.65
14	1.655
15	1.67
16	1.67
17	1.67
18	1.675
19	1.68
20	1.68
22	1.69
24	1.7
26	1.7

Time in mins	Water Level (m)
28	1.71
30	1.72
35	1.735
40	1.745
54	1.78
76	1.83
92	1.85
123	1.9
156	1.94
167	1.96
174	1.98
201	2.01
211	2.01
222	2.03
268	2.07
306	2.1


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	21/08/19
Weather:	
Soakaway Reference:	SA3
Test Number at Location:	2
Groundwater Level at	1.4m
Start:	
Filled with stone?	No

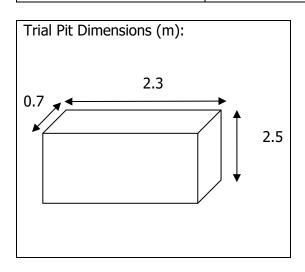
Time in mins	Water Level (m)
1	1.43
2	1.44
3	1.46
4	1.46
5	1.47
2 3 4 5 6	1.47
7	1.48
8	1.49
9	1.49
10	1.49
12	1.49
14	1.5
18	1.51
20	1.52
22	1.53
24	1.54
26	1.55
30	1.55
34	1.56
38	1.57
42	1.58
63	1.63
72	1.65

Time in mins	Water Level (m)
116	1.72
144	1.77
167	1.79
189	1.82
208	1.83
228	1.87
250	1.89
272	1.93
320	1.98
366	2
397	2.02
410	2.03
436	2.04


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	22/08/19
Weather:	
Soakaway Reference:	SA3
Test Number at Location:	3
Groundwater Level at	1.4m
Start:	
Filled with stone?	No

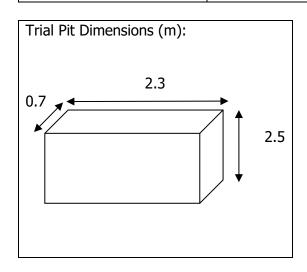
Time in mins	Water Level (m)
1	1.41
2	1.42
3	1.43
4	1.43
2 3 4 5 6	1.43
	1.44
7	1.44
8	1.45
9	1.45
10	1.46
13	1.47
16	1.47
40	1.55
58	1.58
64	1.59
71	1.6
112	1.67
138	1.73
160	1.73
182	1.75
217	1.8
255	1.82
293	1.86

Time in mins	Water Level (m)
333	1.92
378	1.95


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	19/08/19
Weather:	
Soakaway Reference:	SA4
Test Number at Location:	1
Groundwater Level at	1.5m
Start:	
Filled with stone?	No

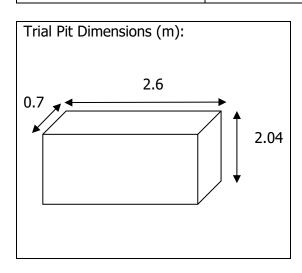
Time in mins	Water Level (m)
1	1.53
2	1.54
3	1.54
2 3 4 5	1.55
5	1.55
6	1.56
7	1.57
8	1.57
9	1.57
10	1.58
12	1.59
14	1.6
16	1.6
18	1.62
20	1.65
25	1.67
30	1.67
35	1.7
38	1.71
53	1.75
58	1.75
67	1.76
72	1.77

Time in mins	Water Level (m)
92	1.8
98	1.81
121	1.85
131	1.87
140	1.88
_	


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	21/08/19
Weather:	
Soakaway Reference:	SA4
Test Number at Location:	2
Groundwater Level at	1.5m
Start:	
Filled with stone?	No

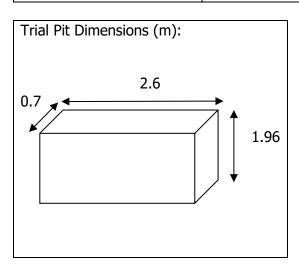
Time in mins	Water Level (m)
1	1.51
2	1.52
3	1.53
4	1.53
5	1.54
6	1.54
2 3 4 5 6 7	1.55
8	1.55
9	1.55
10	1.555
11	1.56
12	1.56
14	1.57
16	1.59
18	1.6
20	1.6
22	1.6
24	1.6
26	1.6
28	1.6
30	1.6
32	1.61
34	1.61

Time in mins	Water Level (m)
36	1.61
38	1.62
40	1.62
42	1.63
83	1.7
107	1.75
128	1.77
153	1.79
172	1.8
196	1.82
212	1.83
233	1.85
255	1.88
303	1.91
349	1.93
392	1.94
417	1.96


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	22/08/19
Weather:	
Soakaway Reference:	SA4
Test Number at Location:	3
Groundwater Level at	1.5m
Start:	
Filled with stone?	No

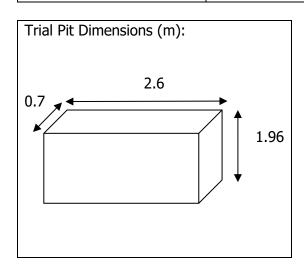
Time in mins	Water Level (m)
0	1.5
1	1.5
2	1.5
3	1.5
4	1.5
5	1.5
2 3 4 5 6 7	1.51
	1.5
8	1.51
9	1.52
10	1.52
38	1.57
63	1.63
87	1.65
107	1.68
142	1.72
167	1.75
205	1.8
245	1.81
291	1.85

Time in mins	Water Level (m)


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	19/08/19
Weather:	
Soakaway Reference:	SA5
Test Number at Location:	1
Groundwater Level at	1.5m
Start:	
Filled with stone?	No

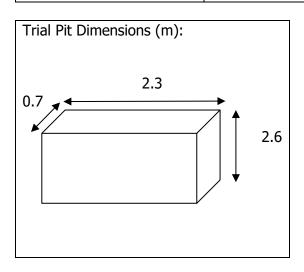
Time in mins	Water Level (m)
1	1.02
2	1.025
3	1.03
4	1.035
2 3 4 5 6	1.04
6	1.045
7	1.05
11	1.06
12	1.065
13	1.07
14	1.075
32	1.12
48	1.15
59	1.15
74	1.17
84	1.195
103	1.22
122	1.25
160	1.27
189	1.3

Time in mins	Water Level (m)


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	21/08/19
Weather:	
Soakaway Reference:	SA5
Test Number at Location:	2
Groundwater Level at	0.93
Start:	
Filled with stone?	No

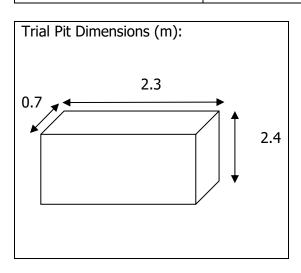
Time in mins	Water Level (m)
1	0.93
2	0.94
3	0.945
4	0.96
2 3 4 5 6	0.96
6	0.965
7	0.97
8	0.98
10	0.98
12	0.99
14	0.99
16	0.99
18	1
21	1.08
24	1.12
26	1.1
28	1.03
30	1.05
32	1.06
34	1.08
48	1.07
65	1.11
101	1.15

Water Level (m)
1.12
1.13
1.18
1.2
1.23
1.25
1.31
1.33
1.35


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	22/08/19
Weather:	
Soakaway Reference:	SA5
Test Number at Location:	3
Groundwater Level at	1.0m
Start:	
Filled with stone?	No

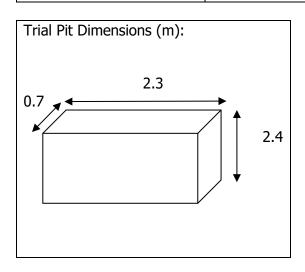
Time in mins	Water Level (m)
1	0.96
2	0.96
3	0.97
4	0.98
3 4 5 6 7	0.98
6	0.98
7	0.99
8	1
9	1
10	0.99
27	1.02
50	1.04
83	1.07
111	1.16
130	1.14
167	1.17
208	1.2
253	1.26

Water Level (m)


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	19/08/19
Weather:	
Soakaway Reference:	SA6
Test Number at Location:	1
Groundwater Level at	1.34m
Start:	
Filled with stone?	No

Time in mins	Water Level (m)
1	1.29
2	1.3
3	1.315
2 3 4 5 6 7	1.325
5	1.33
6	1.34
	1.35
8	1.355
11	1.375
18	1.425
21	1.44
33	1.49
48	1.53
62	1.57
81	1.61
116	1.67
145	1.72
154	1.74

Water Level (m)


Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	21/08/19
Weather:	
Soakaway Reference:	SA6
Test Number at Location:	2
Groundwater Level at	1.4m
Start:	
Filled with stone?	No

Time in mins	Water Level (m)
1	1.41
2	1.42
2 3 4	1.43
4	1.44
5 6	1.45
	1.455
7	1.46
8	1.47
10	1.48
12	1.49
14	1.5
16	1.51
18	1.52
20	1.53
22	1.55
24	1.55
26	1.56
28	1.57
30	1.58
32	1.58
34	1.59
36	1.6
38	1.6

Time in mins	Water Level (m)
40	1.61
42	1.62
44	1.64
62	1.67
80	1.71
115	1.79
136	1.83
154	1.87
175	1.9
193	1.91
216	1.95
242	2.01
286	2.01
330	2.06
375	2.09
399	2.12

Site Name:	Eakring Road, Bilsthorpe
Job Number:	19017
Date:	22/08/19
Weather:	
Soakaway Reference:	SA6
Test Number at Location:	3
Groundwater Level at	1.33m
Start:	
Filled with stone?	No

Time in mins	Water Level (m)
1	1.34
2	1.35
3	1.36
4	1.37
5	1.38
6	1.39
2 3 4 5 6 7	1.39
8	1.4
9	1.41
10	1.41
20	1.48
46	1.55
71	1.62
103	1.67
132	1.74
151	1.75
187	1.82
218	1.86
264	1.9

Time in mins	Water Level (m)

Trial 1 Time (mins)	Time (secs) Depth (mbgl)	Trial 2 Time (mins)	
Soil Infiltration (m/s)	6.13E-06	Soil Infiltration (m/s)	4.98E-06
t between vp75 to vp25(secs)	26500	t between vp75 to vp25(secs)	35500
a50 (m ²)	4.31	a50 (m²)	4.95
Effective volume * 0.3	0.210	Effective volume * 0.3	0.263
Vp75/Vp25 (m ³)	0.700	Vp75/Vp25 (m ³)	0.875
Vp50 (m)	0.40	Vp50 (m)	0.50
Depth (mbgl) at Vp75	2.000	Depth (mbgl) at Vp75	1.850
Vp75 (m)	0.600	Vp75 (m)	0.750
Depth (mbgl) at Vp25	2.400	Depth (mbgl) at Vp25	2.350
Vp25 (m)	0.200	Vp25 (m)	0.250
Effective depth (m)	0.80	Effective depth (m)	1.00
Depth (m) of Water at T = 0	1.80	Depth (m) of Water at T = 0	1.60
Natural depth (m):	0.00	Natural depth (m):	0.00
Depth (m):	2.60	Depth (m):	2.60
Length (m):	2.50	Length (m):	2.50
Width (m):	0.70	Width (m):	0.70
Soakaway SA1A Test 1		Soakaway SA1A Test 2	

Soil Infiltration (m/s)	6.13E-06		Soil Infiltration (m/s)	4.98E-06	
Trial 1			Trial 2		
Time (mins)		Depth (mbgl)	Time (mins)	Time (secs)	Depth (mbgl)
1	60	1.8	1	60	1.61
2	120	1.82	2	120	1.62
3	180	1.83	3	180	1.62
4	240	1.83	4	240	1.63
5	300	1.84	5	300	1.62
6	360	1.85	6	360	1.63
7	420	1.855	7	420	1.63
8	480	1.86	8	480	1.63
9	5 4 0	1.86	9	540	1.63
10	600	1.87	10	600	1.64
11	660	1.88	15	900	1.65
12	720	1.885	27	1620	1.63
13	780	1.89	34	2040	1.64
15	900	1.91	40	2400	1.64
17	1020	1.92	62	3720	1.68
19	1140	1.92	82	4920	1.71
21	1260	1.92	106	6360	1.75
31	1860	1.94	124	7440	1.77
36	2160	1.96	152	9120	1.81
38	2280	1.96	187	11220	1.84
67	4020	2.01	211	12660	1.86
86	5160	2.06	251	15060	1.9
123	7380	2.07	291	17460	1.93
148	8880	2.09	329	19740	1.96
170	10200	2.11			
218	13080	2.15			
264	15840	2.19			
305	18300	2.22			
329	19740	2.25			

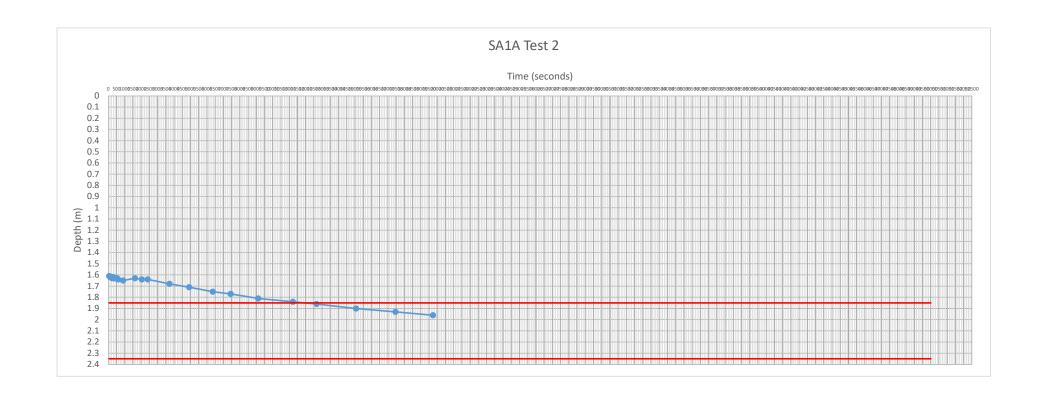
Soakaway SA1A Test 3				
Width (m):	0.00			
Length (m):	0.00			
Depth (m):	0.00			
Natural depth (m):	0.00			
Depth (m) of Water at T = 0	0.00			
Effective depth (m)	0.00			
Vp25 (m)	0.000			
Depth (mbgl) at Vp25	0.000			
Vp75 (m)	0.000			
Depth (mbgl) at Vp75	0.000			
Vp50 (m)	0.00			
Vp75/Vp25 (m ³)	0.000			
Effective volume * 0.3	0.000			
a50 (m²)	0.00			
t between vp75 to vp25(secs)	0			
Soil Infiltration (m/s)	#DIV/0!			

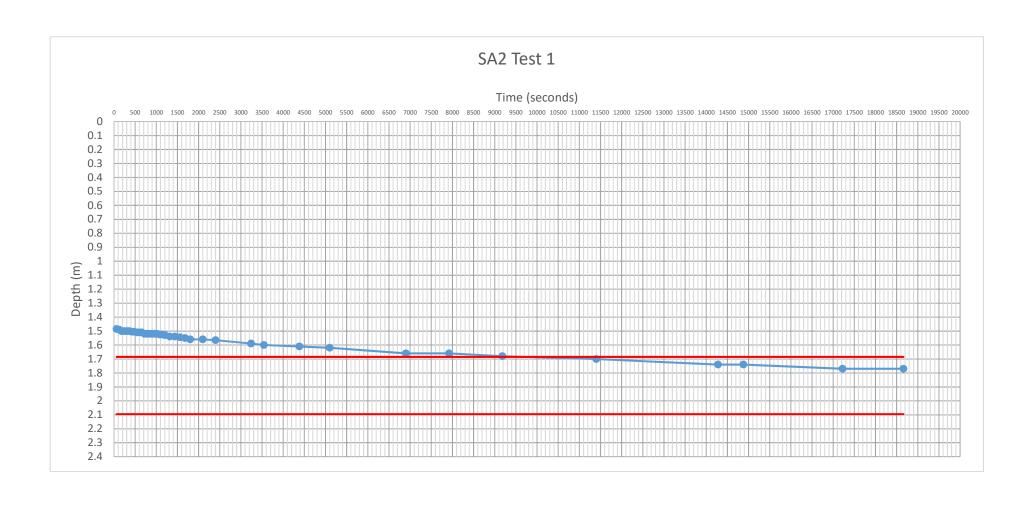
Trial 3

Time (mins) Time (secs) Depth (mbgl)

Soakaway SA2 Test 1 Width (m): Length (m): Depth (m): Natural depth (m): Depth (m) of Water at T = 0	0.70 2.40 2.30 0.00 1.48		Soakaway SA2 Test 2 Width (m): Length (m): Depth (m): Natural depth (m): Depth (m) of Water at T = 0	0.70 2.40 2.14 0.00 1.10		Soakaway SA2 Test 3 Width (m): Length (m): Depth (m): Natural depth (m): Depth (m) of Water at T = 0	0.70 2.40 2.14 0.00 1.14	
Effective depth (m) Vp25 (m) Depth (mbgl) at Vp25 Vp75 (m) Depth (mbgl) at Vp75 Vp50 (m) Vp50 (m) Vp75/Vp25 (m³) Effective volume * 0.3 a50 (m²) t between vp75 to vp25(secs)	0.82 0.205 2.095 0.615 1.685 0.41 0.689 0.000 4.22 44183		Effective depth (m) Vp25 (m) Depth (mbgl) at Vp25 Vp75 (m) Depth (mbgl) at Vp75 Vp50 (m) Vp50 (m) Vp75/Vp25 (m³) Effective volume * 0.3 a50 (m²) t between vp75 to vp25(secs)	1.04 0.260 1.880 0.780 1.360 0.52 0.874 4.90		Effective depth (m) Vp25 (m) Depth (mbgl) at Vp25 Vp75 (m) Depth (mbgl) at Vp75 Vp50 (m) Vp75/Vp25 (m³) Effective volume * 0.3 a50 (m²) t between vp75 to vp25(secs)	1.00 0.250 1.890 0.750 1.390 0.50 0.840 4.78 54166	
Soil Infiltration (m/s)	3.69E-06		Soil Infiltration (m/s)	4.00E-06		Soil Infiltration (m/s)	3.24E-06	
Trial 1 Time (mins)	Time (secs) Dep		Trial 2 Time (mins)	Time (secs)		Trial 3 Time (mins)	Time (secs)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 35 40 54	60 120 180 240 300 360 420 480 540 660 660 720 780 840 900 960 1020 1080 1140 1200 1320 1440 1560 1680 1680 1800 2100 2400 3240	1.485 1.49 1.49 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1 2 3 4 4 5 6 7 7 8 8 9 10 16 20 24 4 28 30 32 2 34 36 38 40 59 9 9 124 145 170 188 213 227	60 120 180 240 300 360 420 480 540 600 1200 1440 1680 1800 1920 2040 2160 2280 2400 3540 5940 7440 8700 11280 12780 11280	1.1 1.13 1.13 1.14 1.15 1.15 1.15 1.16 1.17 1.17 1.18 1.2 1.21 1.21 1.21 1.21 1.21 1.21	0 1 2 3 4 5 6 7 8 9 10 16 22 44 64 88 106 134 168 206 246 283 0 0 0	0 60 60 120 180 240 300 360 420 480 540 600 960 1320 2640 3840 5280 6360 8040 10080 12360 14760 0 0 0	1.14 1.14 1.16 1.17 1.17 1.17 1.17 1.17 1.18 1.18 1.18
59 73 85 115 132 153 190 238 248 287 311	3540 4380 5100 6900 7920 9180 11400 14280 14880 17220 18660	1.6 1.61 1.62 1.66 1.66 1.68 1.7 1.74 1.74 1.77	250 272 320 366 408 437 0 0 0	15000 16320 19200 21960 24480 26220 0 0 0	1.55 1.53 1.55 1.6 1.62 1.63 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

Soakaway SA3 Test 1			Soakaway SA3 Test 2			Soakaway SA3 Test 3		
Width (m):	0.70		Width (m):	0.70		Width (m):	0.70	
Length (m):	2.70		Length (m):	2.70		Length (m):	2.70	
Depth (m):	2.40		Depth (m):	2.40		Depth (m):	2.40	
Natural depth (m):	0.00		Natural depth (m): Depth (m) of Water at T = 0	0.00		Natural depth (m): Depth (m) of Water at T = 0	0.00	
Depth (m) of Water at T = 0	1.50		Depth (m) of water at 1 = 0	1.40		Depth (m) or water at 1 = 0	1.40	
Effective depth (m)	0.90		Effective depth (m)	1.00		Effective depth (m)	1.00	
Vp25 (m)	0.225		Vp25 (m)	0.250		Vp25 (m)	0.250	
Depth (mbgl) at Vp25	2.175		Depth (mbgl) at Vp25	2.150		Depth (mbgl) at Vp25	2.150	
Vp75 (m)	0.675		Vp75 (m)	0.750		Vp75 (m)	0.750	
Depth (mbgl) at Vp75	1.725		Depth (mbgl) at Vp75	1.650		Depth (mbgl) at Vp75	1.650	
Vp50 (m)	0.45		Vp50 (m)	0.50		Vp50 (m)	0.50	
Vp75/Vp25 (m ³)	0.851		Vp75/Vp25 (m ³)	0.945		Vp75/Vp25 (m ³)	0.945	
Effective volume * 0.3	0.255		Effective volume * 0.3	0.284		Effective volume * 0.3	0.284	
a50 (m ²)	4.95		a50 (m ²)	5.29		a50 (m ²)	5.29	
t between vp75 to vp25(secs)	20500		t between vp75 to vp25(secs)	38750		t between vp75 to vp25(secs)	33000	
Soil Infiltration (m/s)	8.38E-06		Soil Infiltration (m/s)	4.61E-06		Soil Infiltration (m/s)	5.41E-06	
Trial 1			Trial 2			Trial 3		
Time (mins)	Time (secs)	Depth (mbgl)	Time (mins)	Time (secs) D	epth (mbal)	Time (mins)	Time (secs)	Depth (mbgl)
1	60	1.5	1	60	1.43	0	0	
2	120	1.53	2	120	1.44	1	60	
3	180	1.55	3	180	1.46	2	120	1.42
4	240	1.56	4	240	1.46	3	180	1.43
5	300	1.575	5	300	1.47	4	240	1.43
6	360	1.59	6	360	1.47	5	300	1.43
7	420	1.6	7	420	1.48	6	360	1.44
8	480	1.6	8	480	1.49	7	420	
9	540	1.605	9	540	1.49	8	480	
10	600	1.62	10	600	1.49	9	540	
11	660	1.625	12	720	1.49	10	600	1.46
12	720	1.64	14	840	1.5	13	780	1.47
13	780	1.65	18	1080	1.51	16	960	1.47
14	840	1.655	20	1200	1.52	40	2400	
15	900	1.67	22	1320	1.53	58	3480	
16	960	1.67	24	1440	1.54	64	3840	
17	1020	1.67	26	1560	1.55	71	4260	
18	1080	1.675	30	1800	1.55	112	6720	1.67
19	1140	1.68	34	2040	1.56	138	8280	
20	1200	1.68	38	2280	1.57	160	9600	
22	1320	1.69	42	2520	1.58	182	10920	1.75
24	1440	1.7	63	3780 4320	1.63 1.65	217	13020	1.8 1.82
26 28	1560 1680	1.7 1.71	72 116	4320 6960	1.05	255 293	15300 17580	1.82
30	1800	1.71	144	8640	1.72	333	19980	1.92
35	2100	1.735	167	10020	1.79	378	22680	
40	2400	1.745	189	11340	1.82	0	0	0
54	3240	1.745	208	12480	1.83	0	0	0
76	4560	1.83	228	13680	1.87	0	0	0
92	5520	1.85	250	15000	1.89	0	0	
123	7380	1.9	272	16320	1.93	0	0	0
156	9360	1.94	320	19200	1.98	0	0	
167	10020	1.96	366	21960	2	0	0	
174	10440	1.98	397	23820	2.02	Ö	0	
201	12060	2.01	410	24600	2.03	0	0	
211	12660	2.01	436	26160	2.04	0	0	
222	13320	2.03	0	0	0	0	0	0
268	16080	2.07	0	0	Ö	0	0	
306	18360	2.1	0	Ö	Ö	0	0	
			-		-	-		-


Soakaway SA4 Test 1			Soakaway SA4 Test 2			Soakaway SA4 Test 3		
Width (m):	0.70		Width (m):	0.70		Width (m):	0.70	
Length (m):	2.30		Length (m):	2.30		Length (m):	2.30	
Depth (m):	2.60		Depth (m):	2.50		Depth (m):	2.50	
Natural depth (m):	0.00		Natural depth (m):	0.00		Natural depth (m):	0.00	
Depth (m) of Water at T = 0	1.50		Depth (m) of Water at T = 0	1.50		Depth (m) of Water at T = 0	1.50	
Effective depth (m)	1.10		Effective depth (m)	1.00		Effective depth (m)	1.00	
Vp25 (m)	0.275		Vp25 (m)	0.250		Vp25 (m)	0.250	
Depth (mbgl) at Vp25	2.325		Depth (mbgl) at Vp25	2.250		Depth (mbgl) at Vp25	2.250	
Vp75 (m)	0.825		Vp75 (m)	0.750		Vp75 (m)	0.750	
Depth (mbgl) at Vp75	1.775		Depth (mbgl) at Vp75	1.750		Depth (mbgl) at Vp75	1.750	
Vp50 (m)	0.55		Vp50 (m)	0.50		Vp50 (m)	0.50	
Vp75/Vp25 (m³)	0.886		Vp75/Vp25 (m³)	0.805		Vp75/Vp25 (m³)	0.805	
Effective volume * 0.3	0.266		Effective volume * 0.3	0.803		Effective volume * 0.3	0.242	
a50 (m²)	4.91		a50 (m²)	4.61		a50 (m²)	4.61	
t between vp75 to vp25(secs)	30500		t between vp75 to vp25(secs)	44500		t between vp75 to vp25(secs)	49500	
Soil Infiltration (m/s)	5.91E-06		Soil Infiltration (m/s)	3.92E-06		Soil Infiltration (m/s)	3.53E-06	
Trial 1			Trial 2			Trial 3		
	T: ()	Dougle (maked)		T: ()	D 41- / 1 1\		Ti () D	4h (h1)
Time (mins)		Depth (mbgl)	Time (mins)	Time (secs)		Time (mins)	Time (secs) Dep	th (mbgl)
1	60	1.53	1	60	1.51	0		1.5
2	120	1.54	2	120	1.52	1	60	1.5
3	180	1.54	3	180	1.53	2	120	1.5
4	240	1.55	4	240	1.53	3	180	1.5
5	300	1.55	5	300	1.54	4	240	1.5
6	360	1.56	6	360	1.54	5	300	1.5
7	420	1.57	7	420	1.55	6	360	1.51
8	480	1.57	8	480	1.55	7	420	1.5
9	540	1.57	9	540	1.55	8	480	1.51
10	600	1.58	10	600	1.555	9	540	1.52
12	720	1.59	11	660	1.56	10	600	1.52
14	840	1.6	12	720	1.56	38	2280	1.57
16	960	1.6	14	840	1.57	63	3780	1.63
18	1080	1.62	16	960	1.59	87	5220	1.65
20	1200	1.65	18	1080	1.6	107	6420	1.68
25	1500	1.67	20	1200	1.6	142	8520	1.72
30	1800	1.67	22	1320	1.6	167	10020	1.75
35	2100	1.7	24	1440	1.6	205	12300	1.73
38	2280	1.71	26	1560	1.6	245	14700	1.81
53	3180	1.71	28	1680	1.6	245		1.85
58				1800		0	17460 0	0
	3480	1.75	30		1.6		0	
67	4020	1.76	32	1920	1.61	0		0
72	4320	1.77	34	2040	1.61	0	0	0
92	5520	1.8	36	2160	1.61	0	0	0
98	5880	1.81	38	2280	1.62	0	0	0
121	7260	1.85	40	2400	1.62	0	0	0
131	7860	1.87	42	2520	1.63	0	0	0
140	8400	1.88	83	4980	1.7	0	0	0
	0		107	6420	1.75	0	0	0
	0		128	7680	1.77	0	0	0
	0		153	9180	1.79	0	0	0
0	0	0	172	10320	1.8	0	0	0
0	0	0	196	11760	1.82	0	0	0
0	0	0	212	12720	1.83	0	0	0
0	Ö	Ö	233	13980	1.85	0	0	Ö
0	Ō	0	255	15300	1.88	0	0	Ō
0	ő	0	303	18180	1.91	0	Ö	0
0	0	0	349	20940	1.93	0	0	0
0	0	0	392	23520	1.94	0	0	0
0	0	U	417	25020	1.96	U	3	5
· ·	U		717	25020	1.30			


Soakaway SA5 Test 1 Width (m):	0.70		Soakaway SA5 Test 2 Width (m):	0.70		Soakaway SA5 Test 3 Width (m):	0.70		
Length (m):	2.60		Length (m):	2.60		Length (m):	2.60		
Depth (m):	2.04		Depth (m):	1.96		Depth (m):	1.96		
Natural depth (m):	0.00		Natural depth (m):	0.00		Natural depth (m):	0.00		
Depth (m) of Water at T = 0	1.00		Depth (m) of Water at T = 0	0.93		Depth (m) of Water at T = 0	0.96		
	101			4.00			4.00		
Effective depth (m) Vp25 (m)	1.04 0.260		Effective depth (m) Vp25 (m)	1.03 0.258		Effective depth (m) Vp25 (m)	1.00 0.250		
Depth (mbgl) at Vp25	1.780		Depth (mbgl) at Vp25	1.703		Depth (mbgl) at Vp25	1.710		
Vp75 (m)	0.780		Vp75 (m)	0.773		Vp75 (m)	0.750		
Depth (mbgl) at Vp75	1.260		Depth (mbgl) at Vp75	1.188		Depth (mbgl) at Vp75	1.210		
Vp50 (m)	0.52		Vp50 (m)	0.52		Vp50 (m)	0.50		
Vp75/Vp25 (m ³)	0.946		Vp75/Vp25 (m ³)	0.937		Vp75/Vp25 (m ³)	0.910		
Effective volume * 0.3	0.284		Effective volume * 0.3	0.281		Effective volume * 0.3	0.273		
a50 (m²)	5.25		a50 (m ²)	5.22		a50 (m ²)	5.12		
t between vp75 to vp25(secs)	47500		t between vp75 to vp25(secs)	54500		t between vp75 to vp25(secs)	60000		
Soil Infiltration (m/s)	3.79E-06		Soil Infiltration (m/s)	3.30E-06		Soil Infiltration (m/s)	2.96E-06		
Trial 1			Trial 2			Trial 3			
Time (mins)	Time (secs)	Depth (mbgl)	Time (mins)	Time (secs) D		Time (mins)	Time (secs) De		
1	60	1.02	1	60	0.93	0	0	0.96	
2	120	1.025	2	120	0.94	1	60	0.96	
3	180	1.03	3	180 240	0.945	2	120	0.96	
4 5	240 300	1.035 1.04	4 5	300	0.96 0.96	3 4	180 240	0.97 0.98	
6	360	1.045	6	360	0.965	5	300	0.98	
7	420	1.05	7	420	0.903	6	360	0.98	
11	660	1.06	8	480	0.98	7	420	0.99	
12	720	1.065	10	600	0.98	8	480	1	
13	780	1.07	12	720	0.99	9	540	1	
14	840	1.075	14	840	0.99	10	600	0.99	
32	1920	1.12	16	960	0.99	27	1620	1.02	
48	2880	1.15	18	1080	1	50	3000	1.04	
59	3540	1.15	21	1260	1.08	83	4980	1.07	
74 84	4440 5040	1.17 1.195	24 26	1440 1560	1.12	111 130	6660 7800	1.16	
103	6180	1.195	28	1680	1.1 1.03	167	10020	1.14 1.17	
122	7320	1.25	30	1800	1.05	208	12480	1.17	
160	9600	1.27	32	1920	1.06	253	15180	1.26	
189	11340	1.3	34	2040	1.08	0	0	0	
	0		48	2880	1.07	0	0	0	
	0		65	3900	1.11	0	0	0	
	0		101	6060	1.15	0	0	0	
	0		122	7320	1.12	0	0	0	
	0		143	8580	1.13	0	0	0	
	0		162	9720 10680	1.18	0	0	0	
	0		178 229	13740	1.2 1.23	0	0	0	
	0		273	16380	1.25	0	0	0	
	0		316	18960	1.31	Ö	0	0	
	0		362	21720	1.33	0	Õ	0	
0	0	0	388	23280	1.35	0	0	0	


		0 1 0107 10		0.1. 0.0.7. (0.	
Soakaway SA6 Test 1	0.70	Soakaway SA6 Test 2	0.70	Soakaway SA6 Test 3	0.70
Width (m):	0.70	Width (m):	0.70	Width (m):	0.70
Length (m):	2.30	Length (m):	2.30	Length (m):	2.30
Depth (m):	2.60	Depth (m):	2.40	Depth (m):	2.40
Natural depth (m):	0.00	Natural depth (m):	0.00	Natural depth (m):	0.00
Depth (m) of Water at T = 0	1.26	Depth (m) of Water at $T = 0$	1.40	Depth (m) of Water at T = 0	1.33
Effective depth (m)	1.34	Effective depth (m)	1.00	Effective depth (m)	1.07
Vp25 (m)	0.335	Vp25 (m)	0.250	Vp25 (m)	0.268
Depth (mbgl) at Vp25	2.265	Depth (mbgl) at Vp25	2.150	Depth (mbgl) at Vp25	2.133
Vp75 (m)	1.005	Vp75 (m)	0.750	Vp75 (m)	0.803
Depth (mbgl) at Vp75	1.595	Depth (mbgl) at Vp75	1.650	Depth (mbgl) at Vp75	1.598
Vp50 (m)	0.67	Vp50 (m)	0.50	Vp50 (m)	0.54
Vp75/Vp25 (m ³)	1.079	Vp75/Vp25 (m ³)	0.805	Vp75/Vp25 (m ³)	0.861
Effective volume * 0.3	0.324	Effective volume * 0.3	0.242	Effective volume * 0.3	0.258
a50 (m²)	5.63	a50 (m²)	4.61	a50 (m²)	4.82
t between vp75 to vp25(secs)	35500	t between vp75 to vp25(secs)	22000	t between vp75 to vp25(secs)	31750
Soil Infiltration (m/s)	5.40E-06	Soil Infiltration (m/s)	7.94E-06	Soil Infiltration (m/s)	5.63E-06
Trial 1		Trial 2		Trial 3	
Time (mins)	Time (secs) Depth (mbgl)	Time (mins)	Time (secs) Depth (mbgl)	Time (mins)	Time (secs) Depth (mbgl)
1 line (mins)	60 1.29	1 ime (mins)	60 1.41	1 mile (milis)	60 1.34
2	120 1.3	2	120 1.42	2	120 1.35
3	180 1.315	3	180 1.43	3	180 1.36
4	240 1.325	4	240 1.44	3	240 1.37
5	300 1.33	5	300 1.45	5	300 1.38
6	360 1.34	6	360 1.455	6	360 1.39
7	420 1.35	7	420 1.46	7	420 1.39
8	480 1.355	8	480 1.47	8	480 1.4
11	660 1.375	10	600 1.48	9	540 1.41
18	1080 1.425	12	720 1.49	10	600 1.41
21	1260 1.44	14	840 1.5	20	1200 1.48
33	1980 1.49	16	960 1.51	46	2760 1.55
48	2880 1.53	18	1080 1.52	71	4260 1.62
62	3720 1.57	20	1200 1.53	103	6180 1.67
81	4860 1.61	22	1320 1.55	132	7920 1.74
116	6960 1.67	24	1440 1.55	151	9060 1.75
145	8700 1.72	26	1560 1.56	187	11220 1.82
154	9240 1.74	28	1680 1.57	218	13080 1.86
		30	1800 1.58	264	15840 1.9
		32	1920 1.58		
		34	2040 1.59		
		36	2160 1.6		
		38	2280 1.6		
		40	2400 1.61		
		42	2520 1.62		
		44	2640 1.64		
		62	3720 1.67		
		80	4800 1.71		
		115	6900 1.79		
		136	8160 1.83		
		154	9240 1.87		
		175	10500 1.9		
		193	11580 1.91		
		216	12960 1.95		
		242	14520 2.01		
		286	17160 2.01		
		330	19800 2.06		
		375	22500 2.09		
		399	23940 2.12		

